链接
题意:
给出一个集合A{1,2,3,n},我们可以取其子集,然后将 a i a_i ai加入score,同时如果存在 i k = j i^k=j ik=j(i,j是选出子集的元素)那么我们应该让score剪去 b j b_j bj
分析:
这个其实就是一个考思维的题,就是如果你能把这个复杂度想的差不多,好,你肯定会写出来。这个难也就难道如何分析这个复杂度。
首先我们看题,肯定要对每个位置进行讨论看他是不是放入子集中,其次,他放入子集后造成的影响。
我们发现2,4,8,16,32,64…这些是一个集合。
3,9,27…这是一个集合。
所以我们就将其分解成一个个的小集合,然后看取其会对各个集合的影响(dfs维护)。两种:
- 取当前元素,加上代价,然后我们给后面他的2次方,3次方,做出的影响。
- 不去当前元素,那直接看下一就行。
复杂度我这里给出简单的分析:
首先最大的集合也就是底数为2的。一共
l
o
g
2
n
log_2^n
log2n个元素,我们对集合内进行dfs复杂度
2
l
o
g
2
n
=
n
2^{log_2^n}=n
2log2n=n,然后我们分解完最多有
l
o
g
2
n
log_2^n
log2n(这个我推测的,方正不会超过
n
\sqrt n
n),然后总复杂度就是
O
(
n
l
o
g
2
n
)
O(nlog_2^n)
O(nlog2n)
/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
typedef unsigned long long ull;
#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;
const int MOD = 998244353;
const int mod = 998244353;
const int N = 2e5 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll n, m,p;
ll a[N],b[N],c[N];
std::vector<ll> v[N];
map<ll,ll>mp;
ll ans,res;
void dfs(ll x,ll y,ll sum){
mp[x]=1;
if(x>n){
res=max(res,sum);
return ;
}
dfs(x*y,y,sum);///不选择当前这个东西
ll tmp=x;
x=x*tmp;
while(x<=n){
c[x]++;
x=x*tmp;
}
dfs(tmp*y,y,sum+a[tmp]-b[tmp]*c[tmp]);///选择当前这个东西
x=tmp*tmp;
while(x<=n){
c[x]--;
x=x*tmp;
}
}
void solve()
{
cin>>n;
for(ll i=1;i<=n;i++) scanf("%lld",&a[i]);
for(ll i=1;i<=n;i++) scanf("%lld",&b[i]),c[i]=0;
ans=a[1];
for(ll i=2;i<=n;i++){
if(mp[i]==1) continue;
res=0;
dfs(i,i,0);
///cout<<res<<" "<<i<<endl;
ans+=res;
}
cout<<ans<<endl;
}
int main()
{
ll t = 1;
///scanf("%lld", &t);
while(t--)
{
solve();
}
return 0;
}
/*
10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
8
*/

 M value dfs+思维&spm=1001.2101.3001.5002&articleId=121365072&d=1&t=3&u=df6557c96acf494abb28193040830270)
560

被折叠的 条评论
为什么被折叠?



