题目链接
给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。
一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], …, nums[j]) * (j - i + 1) 。一个 好 子数组的两个端点下标需要满足 i <= k <= j 。
请你返回 好 子数组的最大可能 分数 。
示例 1:
输入:nums = [1,4,3,7,4,5], k = 3
输出:15
解释:最优子数组的左右端点下标是 (1, 5) ,分数为 min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15 。
示例 2:
输入:nums = [5,5,4,5,4,1,1,1], k = 0
输出:20
解释:最优子数组的左右端点下标是 (0, 4) ,分数为 min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20 。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 2 * 104
0 <= k < nums.length
思路:
首先题目要求是要包含第k个元素,所以我们可以以k为中心往外扩展,这时我们就像,扩展一个方向可能使得另一个方向发生变化,所以我们设计一个扩展规则。首先如果左/右的数大于等于第k个数,那么直接无脑加进去就行。遇到小于第k个数的怎么办?
遇到小于第k个数的,有两种选择,加入和不加入,
- 不加入, 不加入的话,不能保证全局最优,因为结果是最小×长度,不加入只保证了最小这个最优,并不能保证最小×长度最优。所以肯定要加入的。
- 加入,加入就涉及到最小值大小的问题,我们需要变化最小值,如何变化那,还是有两种选择,
1. 直接将最小值变成遇见的第一个小于第k个数的值。但是这样容易造成另一个方向本来可以取到最优,优于最小值断崖式下降导致取不到。简单的说就是,若左边第i个数小于第k个数,如果将最小值从第k个数变成第i个数,可能导致右边第j个数比第i个数大,本身最优的话是往右扩展,但是优先往左扩展了。所以这样也容易取不到全局最优。
2. 那么只能将最小值-1,逐一进行测试了。在看一眼复杂度,n+m(n为数量,m为大小)=1e5.复杂度也满足条件。
所以我们应该用两个指针指向k的左右,循环第k个数的值,然后进行扩展左右。并且记录最优值。
class Solution {
public:
int maximumScore(vector<int>& nums, int k) {
int n = nums.size();
int l=k-1,r=k+1;
int ans=0;
for(int i=nums[k];;i--){// 第一个循环精巧
while(l>=0&&nums[l]>=i){
l--;
}
while(r<n&&nums[r]>=i){
r++;
}
ans=max(ans,(r-l-1)*i);
if(l==-1&&r==n) break;
}
return ans;
}
};

被折叠的 条评论
为什么被折叠?



