mmsegmentation自定义数据集

目录

1.mmsegmentation之model

2.mmsegformer之datasets

2.1 data config

2.2 data class

2.3 total config

3.运行 


1.mmsegmentation之model

mmsegmentation中有很多已经发布的模型供我们使用,这些模型可以在configs/models中找到。关于config的描述也在之前的博文中进行了描述。

2.mmsegformer之datasets

这里主要是讲述如何定义自己的数据集。主要包含三个文件①data config ② data class ③ total config。其中config文件就是Total config(顶层设置文件),也是train.py文件直接调用的config文件;Dataset Class文件是用来定义数据集的类别数和标签名称的;Dataset Config文件则是用来定义数据集目录、数据集信息(例如图片大小)、数据增强操作以及pipeline的。

2.1 data config

Dataset Config文件在 configs/__base__/ datasets目录下,需要自己新建一个xxx.py文件。我们以group_voc2012.py,我的数据格式是VOC的格式;

具体内容如下

# dataset settings
dataset_type = 'GroupVOCDataset'
data_root = '/data/dataset_VOC/VOC2012'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(2048, 512),
        # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=4,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='/datadataset_VOC/VOC2012/JPEGImages',
        ann_dir='/data/dataset_VOC/VOC2012/SegmentationClass',
        split='/data/dataset_VOC/VOC2012/ImageSets/Segmentation/train.txt',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='/data/dataset_VOC/VOC2012/JPEGImages',
        ann_dir='/data/dataset_VOC/VOC2012/SegmentationClass',
        split='/data//dataset_VOC/VOC2012/ImageSets/Segmentation/val.txt',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='/data/dataset_VOC/VOC2012/JPEGImages',
        ann_dir='/data/dataset_VOC/VOC2012/SegmentationClass',
        split='/data/dataset_VOC/VOC2012/ImageSets/Segmentation/val.txt',
        pipeline=test_pipeline))

 需要做以下修改:

dataset_type:更改为自己数据集的类型,可以自己命名,也可以不动;

data_root:更改为自己数据集的路径;

img_dir:更改为自己数据集图片路径;

ann_dir:更改为自己数据集标签的路径;

split:更改为自己的train.txt路径。

其他参数的含义:

img_norm_cfg:数据集的方差与均差

crop_size:数据增强时裁剪的大小

image_scale:原始图像大小

sample_per_gpu: batch size

works_per_gpu: dataloader的线程数目,一般设置为2,4,8

photoMetricDistortion:数据增强操作。分贝是亮度、对比度、饱和度喝色调。

2.2 data class

Dataset Class文件存放在 mmseg/datasets/ 目录下,需要自己新建一个xxx.py文件。我们以groupvoc.py,我的数据格式是VOC的格式;

 config文件实际上是继承该目录下custom.py当中的CustomDataset父类。

修改的参数如下:

1.class GroupVOCDataset(类名,数据格式):这个类名可以更改为自己容易识别的,且与configs/__base__/ datasets/group_voc2012.py中dataset_type的名称一致;

2.CLASS:类型标签,更改为自己的类别种类标签;

3.PALETTE:色盘,更改为自己想要的的色盘颜色;色盘个数与标签个数一致;

4.super (GroupVOCDateset.self):调用父类的时候更改为自己的数据格式,与类名一致。

设置好之后,还需要设置一下该目录下的__init__文件:

修改部分如下:

 import的时候要把自己的Dataset加载进来

__all__数组里面需要加入自己的Dataset类名称

2.3 total config

文件在 configs/目录下,以segformer为例,打开segformer/segformer_mit-b0_512x512_160k_ade20k.py的文件。

注意:

记住一件事,对于mmsegmentation来说,如果你向快速使用的话。config文件几乎是你唯一需要改动的东西。mmseg的模型使用,训练配置,数据地址都是靠config指明的。在mmseg的官网中,有关config的资料很清晰,但是细节并不到位。config是有继承关系的,根文件就是_base_中的一个个文件。虽如此,但我仍然不建议初次使用的小白按照官网提供简略写法。在mmsegmentation的configs下,存放了各式各样的模型的配置文件,这些配置文件大多数都是针对的大型开源数据集。我们需要改的不是网络结构,主要是你的数据集地址,你定义的类别数,以及必要的训练设置。

 

 继承base数据集的文件,model=dict(修改自己修改的参数),例子是修改了预训练权重位置。

3.运行 

 运行文件在tools/train.py中,

 修改的位置如下:

 --config:模型的配置文件路径;

--work-dir:工作日志的保存路径;全部都更改自己想要的路径。

然后运行此文件就可以了。如果出错可能是环境配置的问题。

### 回答1: mmsegmentation是一个基于PyTorch的开源图像分割工具箱,可以用于训练自己的数据集。以下是训练自己数据集的步骤: 1. 准备数据集:将数据集按照训练集、验证集和测试集划分,并将其转换为mmsegmentation所需的格式。 2. 配置训练参数:在mmsegmentation中,训练参数可以通过配置文件进行设置,包括模型、优化器、学习率、损失函数等。 3. 开始训练:使用mmseg的命令行工具开始训练模型,可以通过设置参数来控制训练过程。 4. 评估模型:训练完成后,可以使用mmseg的命令行工具对模型进行评估,包括计算IoU、mIoU等指标。 5. 模型预测:使用训练好的模型对新的图像进行分割预测。 需要注意的是,训练自己的数据集需要一定的计算资源和时间,同时需要对数据集进行充分的预处理和清洗,以提高模型的训练效果。 ### 回答2: mmsegmentation 是一个用于图像分割的深度学习框架,它基于 PyTorch 框架,已经被广泛应用于图像语义分割、实例分割、阴影检测等任务。其所支持的数据类型包括常用的数据集,如 PASCAL VOC、ADE20K、COCO 等。而对于我们自己的数据集,也可以通过一系列步骤来应用于 mmsegmentation 中。 首先,在准备数据时,需要将自己的数据集转化为 mmsegmentation 所支持的数据格式。具体来说,需要将数据集的图片分成训练集、验证集和测试集,同时生成一个 JSON 格式的标注文件,以供训练和测试时使用。同时,还需要对数据进行增强处理,包括大小缩放、翻转、剪裁等等。 其次,在定义模型时,需要根据自己的数据类型选择适合的模型和损失函数。这些模型和损失函数已经在 mmsegmentation 中预定义好了,同时也可以自行定义自己的模型和损失函数。例如,对于常用的图像分割任务,可以使用常见的网络模型,如 UNet、PSPNet 等。 最后,使用 mmsegmentation 进行训练和测试时,需要进行一些参数的配置。主要包括训练参数和测试参数两部分。训练参数包括训练数据集、验证数据集、批量大小、学习率、学习率策略、优化算法等等。测试参数包括测试数据集、模型路径等等。 总体而言,mmsegmentation 是一个非常灵活和易于使用的工具,我们可以使用它来训练和测试自己的数据集。同时,通过不断地调整和优化参数,我们可以得到更加准确的分割结果。 ### 回答3: mmsegmentation是一个基于PyTorch框架的图像分割工具包,可以用来实现各种图像分割算法,如FCN、U-Net、DeepLab、Mask R-CNN等。mmsegmentation提供了训练和测试的代码和模型,也支持自定义数据集的训练。 下面我们将重点介绍mmsegmentation训练自己的数据集: 1. 数据集准备 在训练之前,需要准备好一个包含训练、验证和测试图像以及它们的标注的数据集数据集应该按照一定的文件结构进行组织,比如: ``` + dataset + train - image_1.jpg - image_1.png - ... + val - image_1.jpg - image_1.png - ... + test - image_1.jpg - ... ``` 其中,“train”目录包含训练图像和它们的标注,“val”目录包含验证图像和它们的标注,“test”目录包含测试图像。图像文件可以是jpg、png等格式,标注文件可以是png、mat等格式。注意,标注文件应该和图像文件保持对应,且标注像素的取值通常为0、1、2、...、n-1,表示不同的目标类别。 2. 数据集注册 注册自己的数据集需要通过继承mmcv的Dataset类来实现。自定义数据集需要实现少量方法,包括: * \_\_init\_\_:初始化方法,包括定义类别列表、文件列表等。 * \_\_len\_\_:返回数据集中样本数量。 * \_\_getitem\_\_:返回数据集中指定下标的一条数据和标注。 需要注意的是,返回的数据应该按照mmcv的格式进行处理,比如将图像和标注分别转成ndarray格式并归一化后返回。 3. 配置模型 mmsegmentation支持的模型我们可以通过它的配置文件来配置。通过制定不同的配置文件,我们可以配置不同的网络模型、优化器、学习率策略、训练参数等。对于自己的数据集,我们需要在配置文件中指定类别数、输入图像大小等相关参数。 选择具体的网络模型需要根据自己的数据集大小选择。如果数据集较小,我们可以选择较小的模型,否则可以考虑选择较大的模型,如DeepLabV3+、FCN等。 4. 开始训练 当数据集注册和模型配置完成后,我们可以开始训练自己的数据集。可以通过mmseg中提供的工具进行训练,比如: ``` python tools/train.py ${CONFIG_FILE} ``` 其中,${CONFIG_FILE}是指定的配置文件路径。训练过程中可以通过设置检查点、学习率、优化器等参数来调整模型的训练效果。 5. 验证和测试 训练完成后,我们可以通过mmseg提供的工具进行模型验证和测试,比如: ``` # 验证 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --eval mIoU # 测试 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out result.pkl ``` 其中,${CHECKPOINT_FILE}是训练过程中保存的模型检查点文件路径,验证和测试的输出结果也会保存在指定路径中。在测试阶段,我们可以查看模型的输出结果,检查预测效果是否符合预期。 以上就是使用mmsegmentation训练自己的数据集的主要步骤,需要注意的是,这只是一个大致的过程,具体操作会根据自己的数据集和需求有所不同。同时也需要在训练过程中多多尝试和调整,来达到更好的训练效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值