论文十 Do PLMs Know and Understand Ontological Knowledge? 本文通过设置两个大语言的下游任务Memorizing Task(记忆任务)和Reasoning Task(推理任务)来判模型是否对存储了知识的本体含义,而不是表面的记忆。逻辑推理任务通过对输入两条提示词,再要求模型进行预测,从而检测模型的逻辑推理能力。本论文的实验实在Bert和Roberta上进行,可以很好的实现屏蔽词预测任务。
文献记录一 论文一 BERT: Pre-training of Deep Bidirectional Transformers forLanguage UnderstandingBert原始论文预训练模型,预训练部分主要有两个任务;即Masked LM(遮蔽语言模型),Next Sentence Prediction(下一句预测)模型结构图原论文地址论文二 Deep Residual Learning for Image Recognition(ResNet)Resnet原文引入残差学习的思想,