Lisp 编程基础 Lisp 编程基础使用sbcl,可以输入一些简单的表达式来求值* 1212* "the dog chased the cat""the dog chased the cat"* (defun my-add-one (x)(+ x 1))MY-ADD-ONE* (my-add-one 1)2* 是sbcl的提示符,表达式用括号包括起来,使用defun来定义函数 my-add-one,参数为 x使用 单引号或者 quote 可以避免求值* (+ 1 2)3* '(+ 1 2)(
混合积与双重向量积 三向量的混合积我们定义空间上三个向量 a,b,c ,先作 a 和 b 的向量积,用所得向量再与 c 作数量积,所得结果称为三向量的混合积,记作 (a×b)⋅c(\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}(a×b)⋅c 或者 (a,b,c)(\mathbf{a},\mathbf{b},\mathbf{c})(a,b,c) 或者 (abc)(\mathbf{a}\mathbf{b}\mathbf{c})(abc)设以a,b,c 为棱的平行六边体的体积为 VVV.
两向量的向量积 两向量的向量积两向量 a 与 b 的向量积(外积)是一个向量,记做 a×b\mathbf{a}\times \mathbf{b}a×b 或 [ab][\mathbf{a}\mathbf{b}][ab],它的模是∣a×b∣=∣a∣∣b∣sin∠(a,b)|\mathbf{a}\times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\angle(\mathbf{a},\mathbf{b})∣a×b∣=∣a∣∣b∣sin∠(a,b)它的方向与 a 和 b 都.
两向量的数量积 两向量的数量积向量在轴上的射影设向量 AB→\overrightarrow{AB}AB 的始点 A 和终点 B 在轴 l 上的射影分别为点 A′A'A′ 和 B′B'B′,那么向量 A′B′→\overrightarrow{A'B'}A′B′ 叫做向量 AB→\overrightarrow{AB}AB 在轴 l 上的射影向量,记做 射影向量lAB→\text{射影向量}_{l}\overrightarrow{AB}射影向量lAB。如果在轴上取与轴同方向的单位向量 e,那么由 射影向量lAB→=A′B′
标架与坐标 标架与坐标空间中的一个定点 O, 连同三个不共面的有序向量 e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}e1,e2,e3 的全体, 叫做空间中的一个 标架, 记做 {O ; e1, e2, e3}\{O\; ; \; \mathbf{e}_{1},\; \mathbf{e}_{2},\; \mathbf{e}_{3}\}{O;e1,e2,e3}, 如果 e1,e2,e3\mathbf{e}_{1}, \mathbf{e}_
向量的加法 向量的加法设已知向量 a , b , 以空间任意一点O为始点接连作向量 OA→=a\overrightarrow{OA} = \mathbf{a}OA=a, AB→=b\overrightarrow{AB} = \mathbf{b}AB=b 得一折线 OAB,从折线的端点O到另一端点B的向量 OB→=c\overrightarrow{OB} = \mathbf{c}OB=c,叫做两向量 a 与 b 的和,记做 c=a+b\mathbf{c} = \mathbf{a} + \mathbf{b}c=a+b。求