【灰色系统】—— 灰色系统的基本概念

灰色系统的基本概念


灰数

灰数是灰色系统的基本单元,把只知道大概范围而不知道确切范围的数称为灰数,灰数实际上指在某一区间或某个一般的数集内取值的不确定数,通常用记号 ⊗ \otimes 表示灰数,灰数有以下几类

  1. 下界灰数
    下界灰数有下界而没有上界,记为 ⊗ ∈ [ a ‾ , ∞ ] \otimes ∈ [\underline{a}, \infty] [a,] ⊗ ( a ‾ ) \otimes(\underline{a}) (a),其中 a ‾ \underline{a} a 为灰数 ⊗ \otimes 的下确定界限,它是一个确定的数。

  2. 上界灰数
    上界灰数有上界而没有下界,记为 ⊗ ∈ [ − ∞ , a ˉ ] \otimes ∈[-\infty, \bar{a}] [,aˉ] ⊗ ( a ˉ ) \otimes( \bar{a}) (aˉ),其中 a ˉ \bar{a} aˉ 为灰数 ⊗ \otimes 的上确定界限,是个确定数。

  3. 区间灰数
    既有上界又有下界的灰数称为区间灰数,记为 ⊗ ∈ [ a ‾ , a ˉ ] \otimes ∈[\underline{a}, \bar{a}] [a,aˉ]

  4. 连续灰数与离散灰数
    在某一区间内取有限个值或可数个值的灰数称为离散灰数,取值连续地充满某一区间的灰数称为连续灰数。

  5. 黑数与白数
    ⊗ ∈ [ − ∞ , ∞ ] \otimes ∈[-\infty,\infty] [,] ⊗ ∈ [ ⊗ 1 , ⊗ 2 ] \otimes ∈[\otimes_1,\otimes_2] [1,2],即上、下界皆为无穷或上、下界都是灰数时,称 ⊗ \otimes 为黑数。


灰数计算

(1) 灰数加法则
⊗ 1 ∈ [ a , b ] \otimes_{1} \in[a, b] 1[a,b], a < b a<b a<b, ⊗ 2 ∈ [ c , d ] \otimes_{2} \in[c, d] 2[c,d], c < d c<d c<d,则 ⊗ 1 \otimes_{1} 1 ⊗ 2 \otimes_{2} 2 的和记为 ⊗ 1 + ⊗ 2 \otimes_{1}+\otimes_{2} 1+2,且有 ⊗ 1 + ⊗ 2 ∈ [ a + c , b + d ] \otimes_{1}+\otimes_{2} \in[a+c, b+d] 1+2[a+c,b+d]

(2) 灰数减法则
⊗ 1 ∈ [ a , b ] \otimes_{1} \in[a, b] 1[a,b], a < b a<b a<b, ⊗ 2 ∈ [ c , d ] \otimes_{2} \in[c, d] 2[c,d], c < d c<d c<d,则 ⊗ 1 \otimes_{1} 1 ⊗ 2 \otimes_{2} 2 的差记为 ⊗ 1 − ⊗ 2 \otimes_{1}-\otimes_{2} 12,且有 ⊗ 1 − ⊗ 2 = ⊗ 1 + ( − ⊗ 2 ) ∈ [ a − d , b − c ] \otimes_{1}-\otimes_{2} =\otimes_{1}+(-\otimes_{2})\in[a-d, b-c] 12=1+(2)[ad,bc]

(3) 灰数乘法则
⊗ 1 ∈ [ a , b ] \otimes_{1} \in[a, b] 1[a,b], a < b a<b a<b, ⊗ 2 ∈ [ c , d ] \otimes_{2} \in[c, d] 2[c,d], c < d c<d c<d,则 ⊗ 1 \otimes_{1} 1 ⊗ 2 \otimes_{2} 2 的积记为 ⊗ 1 ⋅ ⊗ 2 \otimes_{1}\cdot \otimes_{2} 12,且有 ⊗ 1 ⋅ ⊗ 2 ∈ [ min ⁡ { a c , a d , b c , b d } , max ⁡ { a c , a d , b c , b d } ] 。 \otimes_{1}\cdot\otimes_{2} \in[\min \{a c, a d, b c, b d\}, \max \{a c, a d, b c, b d\}]。 12[min{ac,ad,bc,bd},max{ac,ad,bc,bd}]

(4) 灰数除法则
⊗ 1 ∈ [ a , b ] \otimes_{1} \in[a, b] 1[a,b], a < b a<b a<b, ⊗ 2 ∈ [ c , d ] \otimes_{2} \in[c, d] 2[c,d], c < d c<d c<d,且 c ≠ 0 , d ≠ 0 , c d > 0 c \neq 0, d \neq 0, c d>0 c=0,d=0,cd>0,则 ⊗ 1 \otimes_{1} 1 ⊗ 2 \otimes_{2} 2 的商记为 ⊗ 1 / ⊗ 2 \otimes_{1}/ \otimes_{2} 1/2,且有 ⊗ 1 / ⊗ 2 ∈ [ min ⁡ { a / c , a / d , b / c , b / d } , max ⁡ { a / c , a / d , b / c , b / d } ] 。 \otimes_{1}/\otimes_{2} \in[\min \{a /c, a/ d, b/ c, b/ d\}, \max \{a/ c, a/ d, b /c, b/ d\}]。 1/2[min{a/c,a/d,b/c,b/d},max{a/c,a/d,b/c,b/d}]


灰微分方程

设有一组原始数列 X ( 0 ) ,   X ( 1 ) X^{(0)},\,X^{(1)} X(0),X(1) X ( 0 ) X^{(0)} X(0) 的一次累加生成数,记 X ( 0 ) = { X ( 0 ) ( 1 ) ,   X ( 0 ) ( 2 ) ,   . . . ,   X ( 0 ) ( n ) } X^{(0)} = \{X^{(0)}(1),\,X^{(0)}(2),\,...,\,X^{(0)}(n)\} X(0)={X(0)(1),X(0)(2),...,X(0)(n)} X ( 1 ) = { X ( 1 ) ( 1 ) ,   X ( 1 ) ( 2 ) ,   . . . ,   X ( 1 ) ( n ) } X^{(1)} = \{X^{(1)}(1),\,X^{(1)}(2),\,...,\,X^{(1)}(n)\} X(1)={X(1)(1),X(1)(2),...,X(1)(n)}

X ( 1 ) X^{(1)} X(1) 上的一阶常系数灰微分方程为: X ( 0 ) ( k ) − a Z ( 1 ) ( k ) = b   ( ∀   k ∈ { 1 , 2 , . . . , n } ) X^{(0)}(k)-aZ^{(1)}(k) = b\,(∀\,k∈\{1,2,...,n\}) X(0)(k)aZ(1)(k)=b(k{1,2,...,n})其中 Z ( 1 ) ( k ) = 1 2 ( X ( 1 ) ( k ) + X ( 1 ) ( k − 1 ) ) Z^{(1)}(k) = \frac{1}{2}(X^{(1)}(k)+X^{(1)}(k-1)) Z(1)(k)=21(X(1)(k)+X(1)(k1)) ( a , b ∈ R ,   R 为 实 轴 ) (a,b∈R,\,R为实轴) (a,bR,R)


影子方程或白化方程

因为灰微分方程 X ( 0 ) ( k ) − a Z ( 1 ) ( k ) = b X^{(0)}(k)-aZ^{(1)}(k)=b X(0)(k)aZ(1)(k)=b是仿照微分方程 d X d t + a X ( 1 ) = b \frac{dX}{dt}+aX^{(1)}=b dtdX+aX(1)=b 建立的,故称后者为前者的影子方程或白化方程。上式中 X ( 0 ) ( k ) X^{(0)}(k) X(0)(k) 为灰导数; Z ( 1 ) ( k ) Z^{(1)}(k) Z(1)(k) X ( 0 ) ( k ) X^{(0)}(k) X(0)(k) 的白化背景值。


背景值

在灰色系统理论中,称 X ( t + △ t ) 、 X ( t ) 、 X ( t − △ t ) X(t+△t)、X(t)、X(t-△t) X(t+t)X(t)X(tt) 为导数 d X d t \frac{dX}{dt} dtdX 在时区 [ t − △ t ,   t + △ t ] [t-△t,\,t+△t] [tt,t+t] 的背景值,它表示 d X d t \frac{dX}{dt} dtdX 是与这些值有关的极限值。


Reference:http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=2008029195.nh&dbcode=CMFD&dbname=CMFDREF

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值