#include <iostream>
#include <opencv2/core/core.hpp> //处理图像的工具
#include <opencv2/features2d/features2d.hpp> //处理特征点信息
#include <opencv2/highgui/highgui.hpp> //作图绘制关键点圆圈和描述子信息
#include <chrono> //用于计时
using namespace std; //标准命名空间
using namespace cv; //cv命名空间
// rosrun ch07 a1_orb_cv src/ch07/src/1.png src/ch07/src/2.png
int main(int argc, char **argv) { //argc 输入参数的个数,argv 输入的参数
if (argc != 3) { // 系统本身加两张图片argc 表示传入数目
cout << "usage: feature_extraction img1 img2" << endl;
return 1;
}
//-- 读取图像
//表示以彩色图像形式读取argv中的参数信息,并且存贮于img_1中。
// Mat 为 opencv 中的类 ,无需定义维度 ,自适应。另外,这里img_1和img_2存储了两张图像
// 的颜色信息,其维度为2维,大小为480*640(这里存储数据的矩阵维度并非480*640,
// 而是480*(640*3),因为要存储每个像素点的BGR信息,因此每个像素的信息对应1行和3列)。
Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); //加载彩色图像,在终端传参
Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
//判断传入数据是否为图像 如果成立程序正常运行,否则报错&&终止程序!
assert(img_1.data != nullptr && img_2.data != nullptr);
//-- 初始化
// 容器vector类型<keypoint>图片1 -> 关键点1 图片2 -> 关键点2;
// 存储角度 距离 分类 关键点坐标 金字塔层数等关键信息。
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2; //描述子
// 可以修改特征点的个数来增加匹配点数量 特征点检测
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create(); //描述子
// 特征匹配 匹配时计算描述子之间的距离使用汉明距离
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
//检测 Oriented FAST 角点前计时
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
detector->detect(img_1, keypoints_1); // 检测图片1的Oriented FAST 角点
detector->detect(img_2, keypoints_2); //检测图片2的Oriented FAST 角点
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1); //计算图片1的描述子
descriptor->compute(img_2, keypoints_2, descriptors_2); //计算图片2的描述子
chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); //计算耗时
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
Mat outimg1; //定义ORB特征显示结果的变量
//画出图像1的ORB特征点提取结果
drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
imshow("ORB features", outimg1); //显示图像1的ORB特征点提取结果
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> matches; //匹配matches
t1 = chrono::steady_clock::now(); //匹配matches
// 使用match方法,获取最匹配的两个特征点(匹配的特征点可以有多对,均存放在matche中)
matcher->match(descriptors_1, descriptors_2, matches); //描述子1和描述子2进行匹配
t2 = chrono::steady_clock::now(); //计时
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); //计算耗时
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
//-- 第四步:匹配点对筛选
// 计算最小距离和最大距离
auto min_max = minmax_element(matches.begin(), matches.end(),
[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
//Dmatch对象保存的是匹配成功的结果,当然这个匹配结果里面包含了不少的误匹配。
//minmax_element()为c++中定义的寻找最小值和最大值的函数。
//第3个参数表示比较函数,默认从小到大,可以省略
//distance: 为两个描述子之间的距离
//将两幅图像的ORB特征点之间的最小距离赋值给min_dist ,最大距离赋值给max_dist
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;
//输出两幅图像的ORB特征点匹配的最大距离,最小距离
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.
// 但有时候最小距离会非常小,设置一个经验值30作为下限.
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors_1.rows; i++) //遍历描述子
{ //不同的结果可以在这里设置
if (matches[i].distance <= max(2 * min_dist, 30.0))
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误 30.0为经验值
{
good_matches.push_back(matches[i]);
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
imshow("all matches", img_match);
imshow("good matches", img_goodmatch);
waitKey(0);
return 0;
}