slambook2(ch7)orb_cv.cpp代码详解(ORB特征提取与匹配

本文介绍了如何使用OpenCV库进行ORB(Oriented FAST and Rotated BRIEF)特征检测与匹配,通过Oriented FAST角点定位,计算BRIEF描述符,并对两张图片的ORB特征进行有效匹配,展示了从图像处理到特征匹配的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <opencv2/core/core.hpp>  //处理图像的工具
#include <opencv2/features2d/features2d.hpp>  //处理特征点信息
#include <opencv2/highgui/highgui.hpp>  //作图绘制关键点圆圈和描述子信息
#include <chrono> //用于计时

using namespace std;  //标准命名空间
using namespace cv;   //cv命名空间
//    rosrun ch07 a1_orb_cv src/ch07/src/1.png src/ch07/src/2.png
int main(int argc, char **argv) {   //argc 输入参数的个数,argv 输入的参数
  if (argc != 3) {  // 系统本身加两张图片argc 表示传入数目
    cout << "usage: feature_extraction img1 img2" << endl;
    return 1;
  }
  //-- 读取图像
  //表示以彩色图像形式读取argv中的参数信息,并且存贮于img_1中。
  // Mat 为 opencv 中的类 ,无需定义维度 ,自适应。另外,这里img_1和img_2存储了两张图像
  // 的颜色信息,其维度为2维,大小为480*640(这里存储数据的矩阵维度并非480*640,
  // 而是480*(640*3),因为要存储每个像素点的BGR信息,因此每个像素的信息对应1行和3列)。
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); //加载彩色图像,在终端传参
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
  //判断传入数据是否为图像  如果成立程序正常运行,否则报错&&终止程序!
  assert(img_1.data != nullptr && img_2.data != nullptr);

  //-- 初始化
  // 容器vector类型<keypoint>图片1 -> 关键点1 图片2 -> 关键点2;
  // 存储角度 距离 分类 关键点坐标 金字塔层数等关键信息。
  std::vector<KeyPoint> keypoints_1, keypoints_2;
  Mat descriptors_1, descriptors_2;  //描述子
  // 可以修改特征点的个数来增加匹配点数量 特征点检测 
  Ptr<FeatureDetector> detector = ORB::create();
  Ptr<DescriptorExtractor> descriptor = ORB::create();  //描述子
  // 特征匹配 匹配时计算描述子之间的距离使用汉明距离
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");

  //-- 第一步:检测 Oriented FAST 角点位置
  //检测 Oriented FAST 角点前计时
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  detector->detect(img_1, keypoints_1); // 检测图片1的Oriented FAST 角点
  detector->detect(img_2, keypoints_2); //检测图片2的Oriented FAST 角点

  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1); //计算图片1的描述子
  descriptor->compute(img_2, keypoints_2, descriptors_2); //计算图片2的描述子
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); //计算耗时
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;

  Mat outimg1;  //定义ORB特征显示结果的变量
  //画出图像1的ORB特征点提取结果
  drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
  imshow("ORB features", outimg1);  //显示图像1的ORB特征点提取结果

  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> matches; //匹配matches
  t1 = chrono::steady_clock::now(); //匹配matches
  // 使用match方法,获取最匹配的两个特征点(匹配的特征点可以有多对,均存放在matche中)
  matcher->match(descriptors_1, descriptors_2, matches);  //描述子1和描述子2进行匹配
  t2 = chrono::steady_clock::now(); //计时
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); //计算耗时
  cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;

  //-- 第四步:匹配点对筛选
  // 计算最小距离和最大距离
  auto min_max = minmax_element(matches.begin(), matches.end(),
      [](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
      //Dmatch对象保存的是匹配成功的结果,当然这个匹配结果里面包含了不少的误匹配。
      //minmax_element()为c++中定义的寻找最小值和最大值的函数。
      //第3个参数表示比较函数,默认从小到大,可以省略

  //distance: 为两个描述子之间的距离   
  //将两幅图像的ORB特征点之间的最小距离赋值给min_dist ,最大距离赋值给max_dist                          
  double min_dist = min_max.first->distance;  
  double max_dist = min_max.second->distance;

  //输出两幅图像的ORB特征点匹配的最大距离,最小距离
  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);

  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.
  // 但有时候最小距离会非常小,设置一个经验值30作为下限.
  //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
  std::vector<DMatch> good_matches;
  for (int i = 0; i < descriptors_1.rows; i++) //遍历描述子
  { //不同的结果可以在这里设置
    if (matches[i].distance <= max(2 * min_dist, 30.0)) 
    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误 30.0为经验值
    {
      good_matches.push_back(matches[i]);
    }
  }

  //-- 第五步:绘制匹配结果
  Mat img_match;
  Mat img_goodmatch;
  drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
  drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
  imshow("all matches", img_match);
  imshow("good matches", img_goodmatch);
   waitKey(0);

  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值