离散数据与连续数据区别

在数据挖掘中,变量、维度和属性的概念相近,关键在于数据类型。离散数据通常指可计的整型值,如[1,2],而连续数据则表示无限可分的区间,如[1,2]之间包含无数实数。样本的个体间差距决定了数据是更接近离散还是连续:差距大倾向于连续,差距小则为离散。例如,家庭人数作为样本时,由于差距小表现为离散数据;而全国人口因个体间差距大,被视为连续数据。
摘要由CSDN通过智能技术生成
  1. 数据挖掘范畴中:变量、维度、属性表示的意义相同

  1. 离散数据与连续数据的定义是相对的

  1. 起决定性因素的是:(样本总量)与(样本中个体与个体之间的差距)的差距大小;差距越大,样本越接近连续数据,差距越小,越接近于离散数据

  1. 例如:样本是家庭,家庭中五个人,每个人是一个个体,差距较小,该样本就是离散数据;样本是全国十四亿人,每个人是一个个体,差距较大,该样本就是连续数据

  1. 离散数据:一般表示可计的,整型的数据,比如正整数列表 [1,2],只能有1,2;连续数据:一般表示不可计,可以被无限挖掘的数据,比如区间 [1,2],1和2之间可以有无限个数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值