稀疏数组
1. 为什么要使用稀疏数组
二维数组在描述某些问题时,用于记录的值很少,大多数都是默认值,而这些默认值并没有实际意义,这是便可以用稀疏数组来描述这些问题。
什么是稀疏数组
基本介绍 当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。 稀i疏数组的处理方法是:
记录数组一 共有几行几列,有多少个不同的值把具有不同值的元素的行列及值记录在- - 一个小规模的数组中,从而缩小程序的规模
举个例子:
最常见的五子棋,假设有11列11行上面有7个棋子,则需要记录11*11=121个数据,而转化为稀疏数组则为3行8列,只需要记录24个数据。相对于121个数据来说就少了很多,下面让我们来实现这个算法。
public class test1 {
public static void main(String[] args) {
//创建一个原始的二位数组11*11
//0:没有棋子,1:黑子,2:白子
int chessArr1[][] = new int[11][11];
chessArr1[0][1] = 1;
chessArr1[1][2] = 2;
chessArr1[2][3] = 1;
chessArr1[3][4] = 2;
chessArr1[4][5] = 1;
chessArr1[5][6] = 2;
chessArr1[6][7] = 1;
//输出原始二维数组
for (int[] row :chessArr1){
for (int data:row){
System.out.printf("%d\t", data);
}
System.out.println();
}
//将二维数组转稀疏数组
//1.先遍历二维数组,将得到的非0数值个数
int sum = 0;
for (int i = 0; i < 11; i++){
for (int j = 0; j <11; j++){
if (chessArr1[i][j] != 0){
sum++;
}
}
}
System.out.println("非零数-----");
System.out.println(sum);
//2.创建对应的稀疏数组
int sparseArr[][] = new int[sum+1][3];
//给稀疏数组赋值
sparseArr[0][0] = 11;
sparseArr[0][1] = 11;
sparseArr[0][2] = sum;
//遍历二维数组,将非0的值存放到sparseArr中
int count = 0; //用于记录第几个非零数字
for (int i = 0; i < 11; i++){
for (int j = 0; j <11; j++){
if (chessArr1[i][j] != 0){
count++;
sparseArr[count][0] = i;
sparseArr[count][1] = j;
sparseArr[count][2] = chessArr1[i][j];
}
}
}
//输出稀疏数组
System.out.println();
System.out.println("得到的稀疏数组为------------");
for (int i = 0; i < sparseArr.length; i++){
System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0]
, sparseArr[i][1], sparseArr[i][2]);
}
System.out.println();
//将稀疏数组返回--》得到二维数组
/**
* 1.先将读取稀疏数组的第一行,根据第一行的数据,创建原始数据的二维数组,比如上面的
*chessArr2 = int[11][11]
*2.在读取稀疏数组后面几行数据,并赋给原始的二维数组
*
*1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组
**/
int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];
//2.读取稀疏数组后几行的数据(从第二行开始),并赋值给原始数组即可
for (int i = 1; i < sparseArr.length; i++){
chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
}
//输出恢复后的二维数组
System.out.println();
System.out.println("恢复后的二维数组-----");
for (int[] row : chessArr2){
for (int data : row){
System.out.printf("%d\t",data);
}
System.out.println();
}
}
}
运行结果为



本文详细介绍了如何在二维问题中通过稀疏数组减少存储空间,以11x11五子棋为例,展示了如何将非零数据从121个压缩到24个。通过创建稀疏数组并重构二维数组,演示了数据压缩和转换技巧。
869

被折叠的 条评论
为什么被折叠?



