提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
本文只要记录一些书中的一些小知识点,挑一些本人认为重要的地方进行总结。
各位道友!道长(zhǎng) 道长(chǎng)
一、感知机
1.感知机模型
由输入空间到输出空间的如下函数,称为感知机
f
(
x
)
=
s
i
g
n
(
w
⋅
x
+
b
)
f(x)=sign(w·x+b)
f(x)=sign(w⋅x+b)
其中,sign是符号函数,大于等于0是+1,小于0是-1。

2.感知机学习策略
为了找出将正负实例点全部分开的超平面,即找到w和b。
需要定义损失函数并将之极小化。损失函数定义为
L
(
w
,
b
)
=
−
∑
x
i
∈
M
y
i
(
w
⋅
x
i
+
b
)
L(w,b)=- \sum_{x_i \in M} y_i(w·x_i+b)
L(w,b)=−xi∈M∑yi(w⋅xi+b)
其中,M是误分类点的集合。
3.感知机学习算法
3.1 原始形式
输入:训练数据集
T
=
(
x
1
,
y
1
)
.
.
.
(
x
N
,
y
N
)
T= {(x_1,y_1)...(x_N,y_N) }
T=(x1,y1)...(xN,yN),学习率
η
\eta
η
输出:
w
w
w,
b
b
b,感知机模型
f
(
x
)
=
s
i
g
n
(
w
⋅
x
+
b
)
f(x)=sign(w·x+b)
f(x)=sign(w⋅x+b)
(1)选初始值
w
0
w_0
w0,
b
0
b_0
b0
(2)训练集合中选数据
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi)
(3)如果
y
i
(
w
⋅
x
+
b
)
≤
0
y_i(w·x+b) \leq 0
yi(w⋅x+b)≤0 (如果选取的店是误分类点)
w
⟵
w
+
η
y
i
x
i
w{\longleftarrow}w+\eta y_ix_i
w⟵w+ηyixi
b
⟵
b
+
η
y
i
b{\longleftarrow}b+\eta y_i
b⟵b+ηyi
(4)转到(2),直到没有误分类点
直观上来说,当遇到误分类点的时候,即这个点位于分离超平面的错误一侧,调整w,b的值,使超平面向误分类点一侧移动,直到越过误分类点,正确分类。
3.2对偶形式
输入:训练数据集
T
=
(
x
1
,
y
1
)
.
.
.
(
x
N
,
y
N
)
T= {(x_1,y_1)...(x_N,y_N) }
T=(x1,y1)...(xN,yN),学习率
η
\eta
η
输出:
α
\alpha
α,
b
b
b,感知机模型
f
(
x
)
=
s
i
g
n
(
∑
j
=
1
N
α
j
y
j
x
j
⋅
x
+
b
)
f(x)=sign(\sum_{j=1}^{N}\alpha_jy_jx_j·x+b)
f(x)=sign(∑j=1Nαjyjxj⋅x+b),其中,
α
=
(
α
1
.
.
.
α
N
)
T
\alpha=(\alpha_1...\alpha_N)^T
α=(α1...αN)T
(1)选初始值
α
0
\alpha_0
α0,
b
0
b_0
b0
(2)训练集合中选数据
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi)
(3)如果
y
i
(
∑
j
=
1
N
α
j
y
j
x
j
⋅
x
i
+
b
)
≤
0
y_i(\sum_{j=1}^{N}\alpha_jy_jx_j·x_i+b) \leq 0
yi(∑j=1Nαjyjxj⋅xi+b)≤0
α
⟵
α
+
η
\alpha{\longleftarrow}\alpha+\eta
α⟵α+η
b
⟵
b
+
η
y
i
b{\longleftarrow}b+\eta y_i
b⟵b+ηyi
(4)转到(2),直到没有误分类点
对偶形式中,有很多实例以内积形式出现,为了方便计算,可以把实例的内积计算出来以矩阵存储,这就是Gram矩阵
G
=
[
x
i
⋅
x
j
]
N
∗
N
G=[x_i·x_j]_{N*N}
G=[xi⋅xj]N∗N
4.感知机算法是收敛的!

总结
今天的内容是统计学习方法的第一章节,挺容易理解的,结合模型图理解更加方便
440

被折叠的 条评论
为什么被折叠?



