《统计学习方法》——第二章 感知机

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

本文只要记录一些书中的一些小知识点,挑一些本人认为重要的地方进行总结。

各位道友!道长(zhǎng) 道长(chǎng)


一、感知机

1.感知机模型

由输入空间到输出空间的如下函数,称为感知机
f ( x ) = s i g n ( w ⋅ x + b ) f(x)=sign(w·x+b) f(x)=sign(wx+b)
其中,sign是符号函数,大于等于0是+1,小于0是-1。
在这里插入图片描述

2.感知机学习策略

为了找出将正负实例点全部分开的超平面,即找到w和b。
需要定义损失函数并将之极小化。损失函数定义为
L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w,b)=- \sum_{x_i \in M} y_i(w·x_i+b) L(w,b)=xiMyi(wxi+b)
其中,M是误分类点的集合。

3.感知机学习算法

3.1 原始形式

输入:训练数据集 T = ( x 1 , y 1 ) . . . ( x N , y N ) T= {(x_1,y_1)...(x_N,y_N) } T=(x1,y1)...(xN,yN),学习率 η \eta η
输出: w w w, b b b,感知机模型 f ( x ) = s i g n ( w ⋅ x + b ) f(x)=sign(w·x+b) f(x)=sign(wx+b)
(1)选初始值 w 0 w_0 w0 b 0 b_0 b0
(2)训练集合中选数据 ( x i , y i ) (x_i,y_i) (xi,yi)
(3)如果 y i ( w ⋅ x + b ) ≤ 0 y_i(w·x+b) \leq 0 yi(wx+b)0 (如果选取的店是误分类点)
w ⟵ w + η y i x i w{\longleftarrow}w+\eta y_ix_i ww+ηyixi
b ⟵ b + η y i b{\longleftarrow}b+\eta y_i bb+ηyi
(4)转到(2),直到没有误分类点

直观上来说,当遇到误分类点的时候,即这个点位于分离超平面的错误一侧,调整w,b的值,使超平面向误分类点一侧移动,直到越过误分类点,正确分类。

3.2对偶形式

输入:训练数据集 T = ( x 1 , y 1 ) . . . ( x N , y N ) T= {(x_1,y_1)...(x_N,y_N) } T=(x1,y1)...(xN,yN),学习率 η \eta η
输出: α \alpha α, b b b,感知机模型 f ( x ) = s i g n ( ∑ j = 1 N α j y j x j ⋅ x + b ) f(x)=sign(\sum_{j=1}^{N}\alpha_jy_jx_j·x+b) f(x)=sign(j=1Nαjyjxjx+b),其中, α = ( α 1 . . . α N ) T \alpha=(\alpha_1...\alpha_N)^T α=(α1...αN)T
(1)选初始值 α 0 \alpha_0 α0 b 0 b_0 b0
(2)训练集合中选数据 ( x i , y i ) (x_i,y_i) (xi,yi)
(3)如果 y i ( ∑ j = 1 N α j y j x j ⋅ x i + b ) ≤ 0 y_i(\sum_{j=1}^{N}\alpha_jy_jx_j·x_i+b) \leq 0 yi(j=1Nαjyjxjxi+b)0
α ⟵ α + η \alpha{\longleftarrow}\alpha+\eta αα+η
b ⟵ b + η y i b{\longleftarrow}b+\eta y_i bb+ηyi
(4)转到(2),直到没有误分类点

对偶形式中,有很多实例以内积形式出现,为了方便计算,可以把实例的内积计算出来以矩阵存储,这就是Gram矩阵
G = [ x i ⋅ x j ] N ∗ N G=[x_i·x_j]_{N*N} G=[xixj]NN

4.感知机算法是收敛的!

在这里插入图片描述

总结

今天的内容是统计学习方法的第一章节,挺容易理解的,结合模型图理解更加方便

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值