蚁群优化算法解决TSP问题(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

旅行者问题,旨在解决最优路线,是一个经典的路径优化问题。 TSP 是指一个旅行商为了去 N 个不同的城市,需要去每一个城市, 只去一次,然后回到原来的城市,形成一个圈,从许多可能的路径中找出最短的路径。TSP 是一种组合优化问题,具有广泛的实际背景和应用价值,可应用于监测山体险情的无线传感器网络系统的设计, 解决传统监测方法中精度有限、能耗高等问题 ,实现数据采集量大, 精度高、低功耗和可靠性高等优点。

由于旅行商问题具有重要的现实意义,相应地提出了求解旅行商问题的算法。最早的解决方案是线性规划,后来产生了多种算法来解决旅行者问题。其中,它大致可分为精确算法、近似算法和智能 算法。但是,近年来,出现了许多新的智能算法,如粒子群算法、蚁群算法和遗传算法。

📚2 运行结果

部分代码:

clc;
clear;
close all;

%% Problem Definition

model=CreateModel();

CostFunction=@(tour) TourLength(tour, model);

nVar=model.n;

%% ACO Parameters

MaxIt=100;      % Maximum Number of Iterations

nAnt=6;         % Number of Ants (Population Size)

Q=1;

tau0=10*Q/(nVar*mean(model.D(:)));         % Initial Phromone

alpha=1;        % Phromone Exponential Weight

beta=1;         % Heuriatic Exponential Weight

rho=0.05;       % Evaporation Rate

%% Initialization

eta=1./model.D;              % Heuristic Information Matrix

tau=tau0*ones(nVar,nVar);    % Phromone Matrix

BestCost=zeros(MaxIt,1);     % Array to Hold Best Cost Values

% Empty Ant
empty_ant.Tour=[];
empty_ant.Cost=[];

% Ant Colony Matrix
ant=repmat(empty_ant,nAnt,1);

% Best Ant

BestAnt.Cost=inf;


%% ACO Main Loop

for it=1:MaxIt
    
    % Move Ants
    for k=1:nAnt
       
        ant(k).Tour=randi([1 nVar]);
        
        for l=2:nVar
           
            i=ant(k).Tour(end);
            
            P=tau(i,:).^alpha.*eta(i,:).^beta;
            
            P(ant(k).Tour)=0;

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]邓慧允,张清泉.蚁群算法与遗传算法在TSP中的对比研究[J].山西师范大学学报(自然科学版),2017,31(03):34-37.DOI:10.16207/j.cnki.1009-4490.2017.03.007. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>