SCN时间序列预测模型详解(Matlab代码实现)

本文介绍了Oracle数据库中的System Change Number(SCN)概念,包括四种不同类型的SCN,并展示了使用Matlab进行数据预处理和训练的代码示例,涉及神经网络模型的参数设置与训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字。在Oracle中,有四种SCN,分别为:系统检查点SCN、数据文件检查点SCN、启动SCN、终止SCN。

📚2 运行结果

 

部分代码:

% Demo Data regression of SCN
clear;
clc;
close all;
format long;
tic;

%%  Prepare the training (X, T) and test data (X2, T2) 
% X: each row vector represents one sample input.
% T: each row vector represents one sample target.
% same to the X2 and T2.
% Note: Data preprocessing (normalization) should be done before running the program.
filename = 'newdatajune10-1-2.csv';
Originaldata1 = csvread(filename,0,0,[0,0,4318,3]);
X = Originaldata1(1:2880,:);
X2 = Originaldata1(2880:4319,:);
Originaldata2 = csvread(filename,0,4,[0,4,4318,4]);
T = Originaldata2(1:2880);
T2 = Originaldata2(2880:4319);

%% Parameter Setting
L_max =250;                    % maximum hidden node number
tol = 0.0001;                    % training tolerance
T_max = 100;                    % maximun candidate nodes number
Lambdas = [0.5, 1, 5, 10, ...
    30, 50, 100, 150, 200, 250];% scope sequence
r =  [ 0.9, 0.99, 0.999, ...
    0.9999, 0.99999, 0.999999]; % 1-r contraction sequence
nB = 1;       % batch size

%% Model Initialization
M = SCN(L_max, T_max, tol, Lambdas, r , nB);
disp(M);

%% Model Training
% M is the trained model
% per contains the training error with respect to the increasing L
[M, per] = M.Regression(X, T);
disp(M);

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]王鑫,吴际,刘超,杨海燕,杜艳丽,牛文生.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018,44(04):772-784.DOI:10.13700/j.bh.1001-5965.2017.0285.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值