Gradient Boosting算法

1. 简介

  • GBDT是boosting的一种方法

1.1 基本原理

  • 训练一个模型m1,产生错误e1
  • 针对e1训练一个模型m2,产生错误e2
  • 针对e2训练第三个模型m3,产生错误e3 …
  • 最终预测结果是:m1+m2+m3+…

1.2 主要思想

  • 每一次建立单个分类器时,是在之前建立的模型的损失函数的梯度下降方向。
  • 损失函数越大,说明模型越容易出错,如果我们的模型能让损失函数持续的下降,则说明我们的模型在持续不断的改进,而最好
    的方式就是让损失函数在其梯度的方向上下降。
  • GBDT的核心在于每一棵树学的是之前所有树结论和的残差
    • 残差就是真实值与预测值的差值
    • 为了得到残差,GBDT中的树全部是回归树,不用分类树
  • Shrinkage(缩减)是 GBDT 的一个重要演进分支
    • Shrinkage的思想在于每次走一小步来逼近真实的结果,比直接迈大步的方式好
    • Shrinkage可以有效减少过拟合的风险。它认为每棵树只学到了一小部分,累加的时候只累加这一小部分,通过多学习几棵
      树来弥补不足。这累加的一小部分(步长*残差)来逐步逼近目标,所以各个树的残差是渐变的而不是陡变的。
  • GBDT可以用于回归问题(线性和非线性),也可用于分类问题

在这里插入图片描述

2. GBDT和随机森林的异同点

2.1 相同点

  • 都是由多棵树构成,最终的结果也是由多棵树决定。

2.2 不同点

  • 随机森林可以由分类树和回归树组成,GBDT只能由回归树组成。
  • 随机森林的树可以并行生成,而GBDT只能串行生成,所以随机森林的训练速度相对较快。
  • 随机森林关注减小模型的方差,GBDT关注减小模型的偏差。
  • 随机森林对异常值不敏感,GBDT对异常值非常敏感。
  • 随机森林最终的结果是多数投票或简单平均,而GBDT是加权累计起来。

3. GBDT的优缺点

3.1 优点

  • GBDT每一次的残差计算都增大了分错样本的权重,而分对的权重都趋近于0,因此泛化性能比较好。
  • 可以灵活的处理各种类型的数据。
    预测精度高

3.2 缺点

  • 对异常值比较敏感。
  • 由于分类器之间存在依赖关系,所以很难进行并行计算。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值