1. 简介
- GBDT是boosting的一种方法
1.1 基本原理
- 训练一个模型m1,产生错误e1
- 针对e1训练一个模型m2,产生错误e2
- 针对e2训练第三个模型m3,产生错误e3 …
- 最终预测结果是:m1+m2+m3+…
1.2 主要思想
- 每一次建立单个分类器时,是在之前建立的模型的损失函数的梯度下降方向。
- 损失函数越大,说明模型越容易出错,如果我们的模型能让损失函数持续的下降,则说明我们的模型在持续不断的改进,而最好
的方式就是让损失函数在其梯度的方向上下降。 - GBDT的核心在于每一棵树学的是之前所有树结论和的残差
- 残差就是真实值与预测值的差值
- 为了得到残差,GBDT中的树全部是回归树,不用分类树
- Shrinkage(缩减)是 GBDT 的一个重要演进分支
- Shrinkage的思想在于每次走一小步来逼近真实的结果,比直接迈大步的方式好
- Shrinkage可以有效减少过拟合的风险。它认为每棵树只学到了一小部分,累加的时候只累加这一小部分,通过多学习几棵
树来弥补不足。这累加的一小部分(步长*残差)来逐步逼近目标,所以各个树的残差是渐变的而不是陡变的。
- GBDT可以用于回归问题(线性和非线性),也可用于分类问题

2. GBDT和随机森林的异同点
2.1 相同点
- 都是由多棵树构成,最终的结果也是由多棵树决定。
2.2 不同点
- 随机森林可以由分类树和回归树组成,GBDT只能由回归树组成。
- 随机森林的树可以并行生成,而GBDT只能串行生成,所以随机森林的训练速度相对较快。
- 随机森林关注减小模型的方差,GBDT关注减小模型的偏差。
- 随机森林对异常值不敏感,GBDT对异常值非常敏感。
- 随机森林最终的结果是多数投票或简单平均,而GBDT是加权累计起来。
3. GBDT的优缺点
3.1 优点
- GBDT每一次的残差计算都增大了分错样本的权重,而分对的权重都趋近于0,因此泛化性能比较好。
- 可以灵活的处理各种类型的数据。
预测精度高
3.2 缺点
- 对异常值比较敏感。
- 由于分类器之间存在依赖关系,所以很难进行并行计算。

900

被折叠的 条评论
为什么被折叠?



