NLP入门_基于深度学习的文本分类

TextCNN

#模型搭建
self.filter_sizes = [2, 3, 4] # n-gram window
self.out_channel = 100
self.convs = nn.ModuleList([nn.Conv2d(1, self.out_channel, (filter_size, input_size), bias=True)
for filter_size in self.filter_sizes])
#前向传播
pooled_outputs = []
for i in range(len(self.filter_sizes)):
 	 filter_height = sent_len - self.filter_sizes[i] + 1
	 conv = self.convs[i](batch_embed)
	 hidden = F.relu(conv) # sen_num x out_channel x filter_height x 1
	 mp = nn.MaxPool2d((filter_height, 1)) # (filter_height, filter_width)
	 # sen_num x out_channel x 1 x 1 -> sen_num x out_channel
	 pooled = mp(hidden).reshape(sen_num, self.out_channel)
	 pooled_outputs.append(pooled)

TextRNN

#模型搭建
input_size = config.word_dims
self.word_lstm = LSTM(
	 input_size=input_size,
	 hidden_size=config.word_hidden_size,
	 num_layers=config.word_num_layers,
	 batch_first=True,
	 bidirectional=True,
	 dropout_in=config.dropout_input,
	 dropout_out=config.dropout_hidden,
)
#前向传播
hiddens, _ = self.word_lstm(batch_embed, batch_masks) # sent_len x sen_num x hidden*2
hiddens.transpose_(1, 0) # sen_num x sent_len x hidden*2
if self.training:
	 hiddens = drop_sequence_sharedmask(hiddens, self.dropout_mlp)

baseline:
https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.64063dadfiXoX7&postId=118259

本课程隶属于自然语言处理(NLP)实战系列。自然语言处理(NLP)是数据科学里的一个分支,它的主要覆盖的内容是:以一种智能与高效的方式,对文本数据进行系统化分析、理解与信息提取的过程。通过使用NLP以及它的组件,我们可以管理非常大块的文本数据,或者执行大量的自动化任务,并且解决各式各样的问题,如自动摘要,机器翻译,命名实体识别,关系提取,情感分析,语音识别,以及主题分割等等。 一般情况下一个初级NLP工程师的工资从15万-35万不等,所以掌握NLP技术,对于人工智能学习者来讲是非常关键的一个环节。 【超实用课程内容】 课程从自然语言处理的基本概念与基本任务出发,对目前主流的自然语言处理应用进行全面细致的讲解,包括文本分类文本摘要提取,文本相似度,文本情感分析,文本特征提取等,同时算法方面包括经典算法与深度学习算法的结合,例如LSTM,BiLSTM等,并结合京东电商评论分类、豆瓣电影摘要提取、今日头条舆情挖掘、饿了么情感分析等过个案例,帮助大家熟悉自然语言处理工程师在工作中会接触到的常见应用的实施的基本实施流程,从0-1入门变成自然语言处理研发工程师。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/25649 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/25649,点击右下方课程资料、代码、课件等打包下载 通过第二课时下载材料
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页