软考攻略/超详细/系统集成项目管理工程师/基础知识分享18

6.5数据分析及应用

6.5.1 数据集成(掌握)

        数据集成就是将驻留在不同数据源中的数据进行整合,向用户提供统一的数据视图,使得用户能以透明的方式访问数据

        

        WebServices技术是一个面向访问的分布式计算模型,它的本质是用一种标准化方式实现不同服务系统之间的互调或集成

        数据网格是一种用于大型数据集的分布式管理与分析的体系结构

6.5.2 数据挖掘(掌握)

        数据挖掘指从大量数据中提取或“挖掘”知识

(1)两者分析对象的数据量有差异

(2)两者运用的分析方法有差异

(3)两者分析侧重有差异

(4)两者成熟度不同

        数据挖掘目标是发现隐藏于数据之后的规律或数据间的关系,从而服务于决策。

        数据挖掘常见的主要任务包括数据总结(目的是对数据进行浓缩,给出它的总体综合描述)、关联分析(置信度度量了关联规则的强度)、分类和预测(根据数据的属性将数据分配到不同的组中)、聚类分析(将数据分成一系列有意义的子集合,每一个集合中的数据性质相近,不同集合点之间的数据性质相差较大)和孤立点分析(从数据库中检测出偏差)

        数据挖掘的流程一般包括确定分析对象、数据准备、数据挖掘、结果评估与结果应用5个阶段,这些阶段在具体实施中可能需要重复多次。

6.5.3 数据服务(掌握)

        数据服务主要包括数据目录服务(用来快捷地发现和定位所需数据资源的一种检索服务,是实现数据共享的重要基础功能服务之一)、数据查询与浏览及下载服务(用户使用的方式有查询数据和下载数据两种)、数据分发服务(数据分发的核心内容包括数据发布、数据发现、数据评价等)

6.5.4 数据可视化(掌握)

        数据可视化可分为7类:一维数据可视化、二维数据可视化、三维数据可视化、多维数据可视化、时态数据可视化、层次数据可视化和网络数据可视化

6.6 数据脱敏和分类分级

6.6.1 数据脱敏(掌握)

        数据使用常常需要经过脱敏华处理,即对数据进行去隐私化处理、实现对敏感信息的包含

1、敏感数据

        个人敏感数据、商业敏感数据、国家秘密数据等

        数据密级等级划分为5个等级:分别是L1(公开)、L2(保密)、L3(机密)、L4(绝密)、L5(私密)

2、数据脱敏

3、数据脱敏方式

        数据脱敏方式包括可恢复与不可恢复两类

        可恢复类指脱敏后可通过一定的方式,恢复成原来的敏感数据,此类脱敏规则主要指各类加解密算法规则。

        不可恢复类脱敏后的数据备脱敏的部分使用任何方式都不能恢复,一般可分为替换算法和生成算法两类。

4、数据脱敏原则

6.6.2 数据分类(掌握)

        数据分类有分类对象和分类依据两个要素

6.6.3 数据分级(掌握)

        数据分级基本框架分为一般数据、重要数据、核心数据3个级别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

畅畅菜鸟

您的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值