哈希的应用——位图、布隆过滤器、海量数据

位图

位图的概念

所谓的位图,就是用每一位来存放一种状态,适用于海量数据,数据无重复的场景。通常是用来判断该数据是否存在。
例题
给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
解决方案

  1. 遍历,时间复杂度O(N)
  2. 排序(O(NlogN)),利用二分查找: logN
  3. 位图解决:直接定址法哈希,每一个整数映射一个比特位。
    数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
    在这里插入图片描述

位图的应用

  1. 快速查找某个数据是否在一个集合中
  2. 排序
  3. 求两个集合的交集,并集等
  4. 操作系统中磁盘块标记
  5. 内核中信号标志位(信号屏蔽和未决信号集)

位图中成员函数及使用

在这里插入图片描述

#include <iostream>
#include <bitset>
using namespace std;

int main()
{
	bitset<8> bs;
	bs.set(2); //设置第2位
	bs.set(4); //设置第4位
	cout << bs << endl; //00010100
	
	bs.flip(); //反转所有位
	cout << bs << endl; //11101011
	cout << bs.count() << endl; //6

	cout << bs.test(3) << endl; //1

	bs.reset(0); //清空第0位
	cout << bs << endl; //11101010

	bs.flip(7); //反转第7位
	cout << bs << endl; //01101010

	cout << bs.size() << endl; //8

	cout << bs.any() << endl; //1

	bs.reset(); //清空所有位
	cout << bs.none() << endl; //1

	bs.set(); //设置所有位
	cout << bs.all() << endl; //1
	return 0;
}

位图的实现

class bitset
{
public:
 bitset(size_t bitCount)
 : _bit((bitCount>>5)+1), _bitCount(bitCount)
 {}
 // 将which比特位置1
 void set(size_t which)
 {
 if(which > _bitCount)
 return;
 size_t index = (which >> 5);
 size_t pos = which % 32;
 _bit[index] |= (1 << pos);
 }
 // 将which比特位置0
 void reset(size_t which)
 {
 if(which > _bitCount)
 return;
 size_t index = (which >> 5);
 size_t pos = which % 32;
 _bit[index] &= ~(1<<pos);
 }
 // 检测位图中which是否为1
 bool test(size_t which)
 {
 if(which > _bitCount)
 return false;
 size_t index = (which >> 5);
 size_t pos = which % 32;
 return _bit[index] & (1<<pos);
 }
 // 获取位图中比特位的总个数
 size_t size()const{ return _bitCount;}
 // 位图中比特为1的个数
 size_t Count()const
 {
 int bitCnttable[256] = {
 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
 6, 7, 6, 7, 7, 8};
 
 size_t size = _bit.size();
 size_t count = 0;
 for(size_t i = 0; i < size; ++i)
 {
 int value = _bit[i];
 int j = 0;
 while(j < sizeof(_bit[0]))
 {
 unsigned char c = value;
 count += bitCntTable[c];
 ++j;
 value >>= 8;
 }
 }
 return count;
 }
private:
 vector<int> _bit;
 size_t _bitCount;
};

布隆过滤器

实际是位图的变形和延申。将哈希和位图进行结合。

布隆过滤器的概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
在这里插入图片描述
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。
在查找时,分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,
代表该元素一定不在哈希表中,否则可能在哈希表中
。但是判断是否该数据存在会存在误判,因为,有可能会有某些是一样的,我们只是判断该位置是否为1,没有其他的判断方式,容易出现误判。

布隆过滤器删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素,因为有可能两个元素之间存在交集
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出来的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:无法确认元素是否真正的在布隆过滤器中、存在计数回绕。

布隆过滤器的优点

  1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
  2. 哈希函数相互之间没有关系,方便硬件并行运算
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

布隆过滤器的缺陷

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在计数回绕问题

海量数据面试题

海量数据——布隆过滤器

例题一:给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法
先计算一个文件是多少,然后假设每个query是20byte,那么100亿个query就是100亿*20字节,所以一个文件大概是200G。
在这里插入图片描述

例题二:如何扩展BloomFilter使得它支持删除元素的操作
使用多个比特位标识一个位置,多尔值映射时++计数,删除时,–计数

海量数据——哈希切割

例题一:给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?
解题思路:先统计次数,然后再找到次数最多的地址
在这里插入图片描述

例题二:与上题条件相同,如何找到top K的IP?
可以建立一个k个数的小堆,这样依次进入后,这个堆中就会有次数最多的k个小堆。因为进入堆的原因必须是比堆顶的数据要大。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幼稚园大哥大

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值