尚小雨雨
码龄5年
关注
提问 私信
  • 博客:18,542
    问答:441
    18,983
    总访问量
  • 17
    原创
  • 1,747,841
    排名
  • 4
    粉丝

个人简介:RUC攻读情报学硕士研究生

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-12-29
博客简介:

weixin_46111393的博客

查看详细资料
个人成就
  • 获得21次点赞
  • 内容获得4次评论
  • 获得34次收藏
  • 代码片获得173次分享
创作历程
  • 12篇
    2022年
  • 5篇
    2021年
成就勋章
TA的专栏
  • 经验帖
    3篇
  • 论文浅尝
    6篇
  • NLP入门分享
    8篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习自然语言处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Elasticsearch检索系统部署|MacBook Pro & Python

最近想基于自定义的一些字段设计检索系统,听说可以使用Elasticsearch这一平台,因此特意探究了一下通过Elasticsearch搭建检索系统的过程。
原创
发布博客 2022.06.13 ·
543 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

corenlp句法树高度计算|MacBook & PyCharm & Python

最近在做文本分析,想分析句子的句法树高度。一开始只找到了可供在线生成和分析斯坦福句法树的网址,经过一番摸索,终于实现在本地读取文件逐行输出句法树高度。
原创
发布博客 2022.06.09 ·
436 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

论文浅尝|《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》

导读这是一篇2016年的ACL论文,题目为《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》,介绍了基于注意力机制的双向长短时记忆关系分类网络。这篇文章的代码开放可用,在https://paperswithcode.com/dataset/semeval-2010-task-8可以下载。一、选题背景关系分类是自然语言处理领域中一项重要的语义处理任务。但即使是目前最先进的
原创
发布博客 2022.04.20 ·
1391 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

经验帖|M1芯片的MacBook pro如何安装Tensorflow【亲测有效】

亲测有效的M1芯片MacBook pro安装Tensorflow方法经验帖!
原创
发布博客 2022.03.07 ·
3555 阅读 ·
3 点赞 ·
2 评论 ·
18 收藏

NLP入门|《统计学习方法》学习(七)|最大熵模型

mark一下学习最大熵模型这一部分时注意到的一些知识点~声明:以下截图来自书本以及b站课程(up主:简博士)。
原创
发布博客 2022.02.03 ·
1634 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

NLP入门|《统计学习方法》学习(六)|logistic

logistic部分的一点内容
原创
发布博客 2022.01.29 ·
905 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NLP入门|《统计学习方法》学习(五)|决策树/剪枝/ID3&C4.5&CART算法

第五章决策树部分内容的学习完结撒花,总共用时3天~
原创
发布博客 2022.01.29 ·
1482 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NLP入门|《统计学习方法》学习(四)|贝叶斯&极大似然估计

学到第四章啦,最基本的贝叶斯原理就不一一介绍了,主要mark一些之前在学习中没有注意到的细节。
原创
发布博客 2022.01.26 ·
654 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NLP入门|《统计学习方法》学习(三)|k近邻

《统计学习方法》一书学习到第三章“k近邻法”啦,继续听Jenneil博士的课,mark其中重要的部分。
原创
发布博客 2022.01.25 ·
1848 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NLP入门|《统计学习方法》学习(二)|感知机模型&梯度下降法

学习《统计学习方法》第二版的第二章,mark其中一些重要的部分。
原创
发布博客 2022.01.24 ·
585 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NLP入门|《统计学习方法》学习(一)

近期学习了《统计学习方法》一书的第一章,有几个值得关注的知识点在此mark一下。
原创
发布博客 2022.01.23 ·
982 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

专栏开通|2022寒假NLP入门分享

写在前面2022年开始,也即将进入大四的最后一个学期。打算利用本科期间最后的这个寒假在毕设之余给自己充充电,重新系统学习一下自然语言处理的内容。常听人说厚积才能薄发,多做输入才能有输出。但我打算反其道而行之,借用CSDN的文章平台,利用输出倒逼自律输入,在此开通专栏,不定期更新学习心得体会以及值得分享的知识。学习计划此处感谢公众号“李rumor”提供的《保姆级NLP学习路线》以及GitHub内容。第一阶段的学习内容选择《统计学习方法(第二版)》,使用看书+b站视频相结合的方法,每天两个小时左右,学
原创
发布博客 2022.01.07 ·
450 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

论文浅尝|《Automatic Keyphrase Extraction : An Overview Of The State Of The Art》

这是2016年的IEEE文章,题目为《Automatic Keyphrase Extraction : An Overview Of The State Of The Art》,主要对于“自动关键词提取”这一话题的最新进展进行了综述,介绍各自动抽取方法的发展以及优缺点,并讨论了造成各方法性能不同的原因,提出未来的改进方向。
原创
发布博客 2021.12.29 ·
558 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

论文浅尝|《Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions》

导读这是2015年发表在IEEE的文章,题目为《Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions》,主要对于实体链接工作现有的方法技术进行了全面分析,并讨论了其应用前景。
原创
发布博客 2021.12.18 ·
812 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

论文浅尝|《Automated Phrase Mining from Massive Text Corpora》

导读这是一篇发表于2018年的IEEE文章,论文题目为《Automated Phrase Mining from Massive Text Corpora》,意为从大量语料中自动挖掘短语。选题背景1. 短语挖掘任务:在语料中自动提取高质量短语(科学术语和通用实体等),举例:information extraction/retrieval, taxonomy construction, and topic modeling2. 目前大多数文本识别方法存在问题:依赖于复杂、经过训练的语言分析器
原创
发布博客 2021.12.14 ·
1851 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

论文浅尝|《Entitymetrics: Measuring the Impact of Entities》

这是一篇发表于2013年的论文,《Entitymetrics: Measuring the Impact of Entities》,作者提出了“实体计量学”(entitymetrics)这一概念来衡量知识单元的影响。
原创
发布博客 2021.12.07 ·
502 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

论文浅尝|《Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers》

阅读一篇来自斯坦福大学计算机系的论文,发表于2011年,题目是《Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers》,聚焦于通过提取科学论文的关键点来分析研究动态。
原创
发布博客 2021.12.05 ·
333 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多