论文浅尝|《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》

导读

这是一篇2016年的ACL论文,题目为《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》,介绍了基于注意力机制的双向长短时记忆关系分类网络。

这篇文章的代码开放可用,在https://paperswithcode.com/dataset/semeval-2010-task-8可以下载。

一、选题背景

关系分类是自然语言处理领域中一项重要的语义处理任务。但即使是目前最先进的系统仍然面临一定的局限:

  • 依赖语法分析以及命名实体识别(NER)获得高级特征。
  • 重要信息可能出现在句子中的任何位置。

二、贡献

为了解决上述问题,作者提出了基于注意力机制的双向长短时记忆网络来获取句子中最重要的语义信息,它不依赖于任何词汇资源或者系统特征。在SemEval-2010关系分类任务上的实验结果F1值达到了84.0%,表明本文提出的方法优于现有只使用词向量的大多数方法。

三、基本概念

1. 关系分类

关系分类的任务是发现名词对之间的语义关系,这对于许多NLP应用都非常有用,例如信息提取、问答系统等。
作者举了如下例子,Example:⟨e1⟩Flowers⟨/e1⟩are carried into

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>