导读
这是一篇2016年的ACL论文,题目为《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》,介绍了基于注意力机制的双向长短时记忆关系分类网络。
这篇文章的代码开放可用,在https://paperswithcode.com/dataset/semeval-2010-task-8可以下载。
一、选题背景
关系分类是自然语言处理领域中一项重要的语义处理任务。但即使是目前最先进的系统仍然面临一定的局限:
- 依赖语法分析以及命名实体识别(NER)获得高级特征。
- 重要信息可能出现在句子中的任何位置。
二、贡献
为了解决上述问题,作者提出了基于注意力机制的双向长短时记忆网络来获取句子中最重要的语义信息,它不依赖于任何词汇资源或者系统特征。在SemEval-2010关系分类任务上的实验结果F1值达到了84.0%,表明本文提出的方法优于现有只使用词向量的大多数方法。
三、基本概念
1. 关系分类
关系分类的任务是发现名词对之间的语义关系,这对于许多NLP应用都非常有用,例如信息提取、问答系统等。
作者举了如下例子,Example:⟨e1⟩Flowers⟨/e1⟩are carried into

最低0.47元/天 解锁文章
840

被折叠的 条评论
为什么被折叠?



