并查集

并查集

1.将两个集合合并

2.询问两个元素是否在一个集合中

近乎O(1)

基本原理

每个集合用一棵树来表示,树根的编号即为整个集合的编号。并存储每个节点的父节点,p[x]表示x的父节点。

问题1.如何判断树根:

if(p[x] = x)

问题2.如何求x的集合编号:

while(p[x] != x) x = p[x]; (当查找元素是否在某个集合中时,依次向上找父节点,直到找到树根,就知道该元素属于哪个集合了。) 

问题3.如何合并两个集合:

px是x的集合编号,py是y的集合编号。 令 p[x] = y;

优化:路径压缩

如果某个节点x找到了它的集合编号,那么就把x路径上所有的点都指向这棵树的根节点,即把集合编号赋给x路径上所有的节点。 

AcWing 836.合并集合

#include <iostream>

using namespace std;

const int N = 100010;

int n,m;
int p[N];

int find(int x) //返回x的祖宗节点 + 路径压缩
{
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}
int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++ ) p[i] = i;
    while(m -- )
    {
        char op[2];
        int a,b;
        scanf("%s%d%d",op,&a,&b);
        if(op[0] == 'M')
        p[find(a)] = find(b); 
        else 
        {
            if(find(a) == find(b)) printf("Yes\n");
            else printf("No\n");
        }
    }
    return 0;
}

拓展:维护每个集合中元素的数量 

典例 —— 连通块中点的数量

#include <iostream>

using namespace std;

const int N = 100010;

int n,m;
int p[N],cnt[N];

int find(int x)
{
    if(x != p[x]) p[x] = find(p[x]);
    return p[x];
}

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        cnt[i] = 1;
    }
    
    while(m -- )
    {
        string op;
        int a,b;
        cin >> op;
        if(op == "C")
        {
            cin >> a >> b;
            if(find(a) == find(b)) continue;
            cnt[find(b)] += cnt[find(a)];
            p[find(a)] = find(b);
        }
        else if(op == "Q1")
        {
            cin >> a >> b;
            if(find(a) == find(b))
            printf("Yes\n");
            else 
            printf("No\n");
        }
        else if(op == "Q2")
        {
            cin >> a;
            printf("%d\n",cnt[find(a)]);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值