并查集
1.将两个集合合并
2.询问两个元素是否在一个集合中
近乎O(1)
基本原理
每个集合用一棵树来表示,树根的编号即为整个集合的编号。并存储每个节点的父节点,p[x]表示x的父节点。
问题1.如何判断树根:
if(p[x] = x)
问题2.如何求x的集合编号:
while(p[x] != x) x = p[x]; (当查找元素是否在某个集合中时,依次向上找父节点,直到找到树根,就知道该元素属于哪个集合了。)
问题3.如何合并两个集合:
px是x的集合编号,py是y的集合编号。 令 p[x] = y;
优化:路径压缩
如果某个节点x找到了它的集合编号,那么就把x路径上所有的点都指向这棵树的根节点,即把集合编号赋给x路径上所有的节点。
AcWing 836.合并集合
#include <iostream>
using namespace std;
const int N = 100010;
int n,m;
int p[N];
int find(int x) //返回x的祖宗节点 + 路径压缩
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ ) p[i] = i;
while(m -- )
{
char op[2];
int a,b;
scanf("%s%d%d",op,&a,&b);
if(op[0] == 'M')
p[find(a)] = find(b);
else
{
if(find(a) == find(b)) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}
拓展:维护每个集合中元素的数量
典例 —— 连通块中点的数量
#include <iostream>
using namespace std;
const int N = 100010;
int n,m;
int p[N],cnt[N];
int find(int x)
{
if(x != p[x]) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ )
{
p[i] = i;
cnt[i] = 1;
}
while(m -- )
{
string op;
int a,b;
cin >> op;
if(op == "C")
{
cin >> a >> b;
if(find(a) == find(b)) continue;
cnt[find(b)] += cnt[find(a)];
p[find(a)] = find(b);
}
else if(op == "Q1")
{
cin >> a >> b;
if(find(a) == find(b))
printf("Yes\n");
else
printf("No\n");
}
else if(op == "Q2")
{
cin >> a;
printf("%d\n",cnt[find(a)]);
}
}
return 0;
}