数模更新篇-6-模糊综合评价模型

概述

数学归纳法和秃子悖论

数学归纳法

①当n=1时,成立
②假设n=k时成立,验证n=k+1也成立
由①②可以得到,对于所有的n都成立

秃子悖论

①减少一根不是秃子
②假设减少k跟不是秃子,那么减少k+1根也不是秃子
显然此命题不严谨。
解释:
文学角度:压死骆驼的最后一根稻草
哲学角度:量变引起的质变
数学角度:引入模糊的概念

数学中研究量的划分

确定性:经典数学(几何,代数)

不确定性:

随机性(概率论,随机过程)

灰性(灰色系统)

模糊性(模糊数学)

生活中处处存在模糊性

模糊性和确定性相对。
比如:
确定性的概念:性别、天气、年龄、身高、体重
模糊性的概念:帅、高、白、年轻等

模糊数学的介绍

模糊数学⼜称Fuzzy 数学,是研究和处理模糊性现象的⼀种数学理论和⽅法。模糊性数学发展的主流是在它的应⽤⽅⾯。
由于模糊性概念已经找到了模糊集的描述⽅式,⼈们运⽤概念进⾏判断、评价、推理、决策和控制的过程也可以⽤模糊性数
学的⽅法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。
这些⽅法构成了⼀种模糊性系统理论,构成了⼀种思辨数学的雏形,它已经在医学、⽓象、⼼理、经济管理、⽯油、地质、
环境、⽣物、农业、林业、化⼯、语⾔、控制、遥感、教育、体育等⽅⾯取得具体的研究成果。

经典集合和模糊集合的基本概念

经典集合特征函数

①集合:既有相同属性的事物的集体,例如:颜色,性别,手机品牌。
②集合的基本属性:互斥性,确定性
在这里插入图片描述

模糊集合隶属函数

①模糊集合:用来描述模糊性概念的集合(帅、高、白、年轻)
②与经典集合相比,模糊集合承认亦此亦彼
在这里插入图片描述
(隶属函数的函数值也叫做隶属度)
若会与一个模糊集合A我们给定了一个隶属函数U A,我么可以将A和UA视为相同。

隶属函数的三种表示方法

在这里插入图片描述

模糊集合的分类

一般情况下,我们可以将模糊集合分为三类
①偏小型:年轻,冷,小
②中间型:中年,暖,中
③偏大型:年老,热, 大
可以想象,隶属函数的图像和模糊集合的类型有很大关系:
在这里插入图片描述

隶属函数的三种确定方法

模糊统计法

在数模比赛中很少用,要统计发放的问题,可能来不及,但是做研究用的较多
原理:找多个人对同一个模糊的概念进行描述,用隶属频率定义隶属度。

借助已有的客观尺度

已有合适的指标,并能收集到数据。
在这里插入图片描述
(注意这里找到的来形容隶属度的指标必须介于0到1之间,如不是,可以进行归一化处理)

指派法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如何选择方法

如果可以进行问卷调查就用模糊统计法
如果可以找到指标就用借助已有的客观尺度法
如果以上两则均不符合,用指派法,最常用的是梯形的哪一个模型。

应用

评价问题概述

模糊评价问题时要把论域中的对象对应到平面集合中的一个指定的评语或者将方案作为评语集并选择一个最优的方案(两个角度)。
在模糊评价中
①因素集(评价指标集)
②评语集(评价的结果)
③权重集(指标的权重)
在这里插入图片描述

一级模糊综合评价模型

一般的n <= 5(指标的个数小于等于5)
所谓级数就是评价的层数
①确定因素集
②确定评语集
③确定各因素的权重
Delphi法,加权平均法,众人评估法。
④确定模糊综合判断矩阵
在这里插入图片描述
⑤综合评判。如果有一个从U到V的模糊关系R= 、(rijn*m, 那么利用
R就可以得到一个模糊变换
TR:F(U)->F(V),由此变换可以得到综合评价结果就是B=A*R。
综合评价可以看作是V上的模糊向量,记B = [b1, b2, … , bn]。

对员工进行年终评定

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评价空气质量等级

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
有四个m,所以给出四个隶属函数

多级模糊综合评价模型

陶瓷厂六种产品销量的评判

三级模糊综合评价模型
在这里插入图片描述
先用一级模糊综合评价
在这里插入图片描述
进行归一化的目的就是让得到的隶属度再0到1之间。
在这里插入图片描述
在这里插入图片描述
说白了,实际上的多级模糊综合评价就是多个一级综合迷糊评价。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页