数学分析 微分中值定理与应用(第6章)

一.拉格朗日定理
1.罗尔定理(RRolle’s Theorem):

定理6.1:若函数f满足如下条件:
①在[a,b]上连续
②在(a,b)上可导
③f(a)=f(b)
则在(a,b)上至少有1点 ξ \xi ξ,使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0
在这里插入图片描述
几何意义:在每点都可导的1段连续曲线上,如果曲线的2高端点高度相等,则曲线至少有1条水平切线(见图6-1)
定理中的3个条件缺少任何1个,结论都可能不成立(见图6-2)

2.拉格朗日中值定理(Lagrange Mean Value Theorem):

若函数f满足如下条件:
①在[a,b]上连续
②在(a,b)上可导
则在(a,b)上至少∃1点 ξ \xi ξ,使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a}\qquad\qquad f(ξ)=baf(b)f(a)(2)
说明:当 f ( a ) = f ( b ) , 本 定 理 就 退 化 为 罗 尔 定 理 , 即 罗 尔 定 理 是 拉 格 朗 日 定 理 的 1 个 特 殊 情 况 f(a)=f(b),本定理就退化为罗尔定理,即罗尔定理是拉格朗日定理的1个特殊情况 f(a)=f(b),退,1
在这里插入图片描述
几何意义:在满足定理条件的曲线y=f(x)上至少∃1点P( ξ , f ( ξ ) \xi,f(\xi) ξ,f(ξ)),该曲线在该点的切线平行于曲线2个端点的连线AB,证明中引入的辅助函数F(x)表示的正是y=f(x)与AB的差

式(2)被称为拉格朗日公式,该式有几种等价的表示形式:
f ( b ) − f ( a ) = f ′ ( ξ ) ⋅ ( b − a ) , a < ξ < b ( 3 ) f(b)-f(a)=f'(\xi)·(b-a),a<\xi<b\qquad\qquad(3) f(b)f(a)=f(ξ)(ba),a<ξ<b(3)
f ( b ) − f ( a ) = f ′ ( a + θ ( b − a ) ) ( b − a ) , 0 < θ < 1 ( 4 ) f(b)-f(a)=f'(a+θ(b-a))(b-a),0<\theta<1\qquad\qquad(4) f(b)f(a)=f(a+θ(ba))(ba),0<θ<1(4)
f ( a + h ) − f ( a ) = f ′ ( a + θ h ) h , 0 < θ < 1 ( 5 ) f(a+h)-f(a)=f'(a+\theta h)h,0<\theta<1\qquad\qquad(5) f(a+h)f(a)=f(a+θh)h,0<θ<1(5)
式(2)对a>b或a<b都成立, ξ \xi ξ是介于a和b之间的某数,式(4)(5)的特点在于把 ξ \xi ξ表示成了 a + θ h a+\theta h a+θh

3.拉格朗日中值定理的几个推论:

推论1:若函数f在区间I上可导,且 f ′ ( x ) ≡ 0 ( x ∈ I ) f'(x)≡0(x∈I) f(x)0(xI),则f为I上的1个常量函数
在这里插入图片描述

推论2:若函数f和g均在区间I上可导,且 f ′ ( x ) ≡ g ′ ( x ) ( x ∈ I ) f'(x)≡g'(x)(x∈I) f(x)g(x)(xI),则在I上 f ( x ) 与 g ( x ) f(x)与g(x) f(x)g(x)至多只相差某一常数,即 f ( x ) = g ( x ) + c ( c 为 某 一 常 数 ) f(x)=g(x)+c(c为某一常数) f(x)=g(x)+c(c)
在这里插入图片描述

推论3(导数极限定理):设函数f在某 U ( x 0 ) U(x_0) U(x0)上连续,在 U ° ( x 0 ) U°(x_0) U°(x0)上可导,且 lim ⁡ x → x 0 f ′ ( x ) \displaystyle\lim_{x \to x_0}{f'(x)} xx0limf(x)存在,则f在 x 0 x_0 x0处可导,且 f ′ ( x 0 ) = lim ⁡ x → x 0 f ′ ( x ) ( 6 ) f'(x_0)=\displaystyle\lim_{x \to x_0}{f'(x)}\qquad(6) f(x0)=xx0limf(x)(6)
在这里插入图片描述
导数极限定理适合用于求分段函数的导数

二.函数的单调性
1.递增/减的充要条件:

定理6.3:若 f ( x ) f(x) f(x)在区间I上可导,则 f ( x ) f(x) f(x)在I上递增(减)的充要条件是: f ′ ( x ) ≥ 0 ( ≤ 0 ) f'(x)≥0(≤0) f(x)0(0)
在这里插入图片描述

2.严格递增/减的充要条件:

定理6.4:若函数f在(a,b)上可导,则f在(a,b)上严格递增(减)的充要条件是: ①对 ∀ x ∈ ( a , b ) ∀x∈(a,b) x(a,b),有 f ′ ( x ) ≥ 0 ( ≤ 0 ) f'(x)≥0(≤0) f(x)0(0) ②在(a,b)的∀子区间上 f ′ ( x ) ≢ 0 f'(x)\not\equiv0 f(x)0
注:若f在(a,b)上严格递增(减),且在a右连续,则f在[a,b)上也严格递增(减);对b也有类似结论

推论1:设f在区间I上可微,若f’(x)>0(<0),则f在I上严格递增(减)
推论2(严格单调的充分条件):设f(x)在区间I上满足 f ′ ( x ) ≠ 0 f'(x)≠0 f(x)=0,则f(x)在I上严格单调

3.达布定理(Darboux‘s’ Theorem):

  • 该定理又称导函数的介值定理

定理6.5:若函数f在[a,b]上可导,且 f + ′ ( a ) ≠ f − ′ ( b ) f'_+(a)\neq f'_-(b) f+(a)=f(b),k为介于 f + ′ ( a ) 和 f − ′ ( b ) f'_+(a)和f'_-(b) f+(a)f(b)间的∀实数,则至少∃1点 ξ ∈ ( a , b ) \xi∈(a,b) ξ(a,b),使得 f ′ ( ξ ) = k f'(\xi)=k f(ξ)=k
在这里插入图片描述
例8参见 导数与微分.一.3.(3) 部分

三.柯西中值定理与不定式极限
1.柯西中值定理:

定理6.6:设函数f和g满足:
①在[a,b]上连续
②在(a.b)上可导
③f’(x)与g’(x)不同时为0
④g(a)≠g(b)
则∃ ξ ∈ ( a , b ) \xi∈(a,b) ξ(a,b),使 f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a )} g(ξ)f(ξ)=g(b)g(a)f(b)f(a)
在这里插入图片描述

2.不定式极限

我们把2个无穷小(大)量之比的极限统称为不定式极限,分别记为 0 0 型 和 ∞ ∞ 型 \frac{0}{0}型和\frac{\infty}{\infty}型 00的不定式极限,这种极限可能存在也可能不存在
我们使用导数来研究不定式极限,这种方法被称为洛必达法则(L’Hospital’s Rule),柯西中值定理是建立洛必达法则的理论依据
概括地说,洛必达法则是在一定条件下通过对分子和分母分别求导,然后再通过分别求导后比值的极限来确定未定式值的方法

(1) 0 0 \frac{0}{0} 00型不定式极限:

定理6.7:若函数f和g满足:
lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 \displaystyle\lim_{x \to x_0}{f(x)}=\displaystyle\lim_{x \to x_0}{g(x)}=0 xx0limf(x)=xx0limg(x)=0
②在某 U ° ( x 0 ) U°(x_0) U°(x0)上f和g均可导,且 g ′ ( x ) ≠ 0 g'(x)≠0 g(x)=0
lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A ( A 可 为 实 数 , 也 可 为 ± ∞ 或 ∞ ) \displaystyle\lim_{x \to x_0}{\frac{f'(x)}{g'(x)}}=A(A可为实数,也可为±\infty或\infty) xx0limg(x)f(x)=A(A,±)
lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \displaystyle\lim_{x \to x_0}{\frac{f(x)}{g(x)}}=\displaystyle\lim_{x \to x_0}{\frac{f'(x)}{g'(x)}}=A xx0limg(x)f(x)=xx0limg(x)f(x)=A
在这里插入图片描述
在这里插入图片描述
注意: 1.将定理6.7中的 x → x 0 x\to x_0 xx0换成 x → x 0 ± / ± ∞ / ∞ x\to x_0^{±/±\infty/\infty} xx0±/±/,只要相应地修改②中的邻域,也可得到相同的结论
\qquad 2.如果 lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \displaystyle\lim_{x \to x_0}{\frac{f'(x)}{g'(x)}} xx0limg(x)f(x)仍是 0 0 \frac{0}{0} 00型的不定式极限,且仍满足3个条件,则可继续使用定理6.7

(2) ⚫ ∞ \frac{⚫}{\infty} 型不定式极限:

定理6.8:若函数f和g满足:
①在某 U ° + ( x 0 ) U°_+(x_0) U°+(x0)上f和g均可导,且 g ′ ( x ) ≠ 0 g'(x)≠0 g(x)=0
lim ⁡ x → x 0 + g ( x ) = ∞ \displaystyle\lim_{x \to x_0^+}{g(x)=\infty} xx0+limg(x)=
lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A ( A 可 为 实 数 , 也 可 为 ± ∞ 或 ∞ ) \displaystyle\lim_{x \to x_0^+}{\frac{f'(x)}{g'(x)}}=A(A可为实数,也可为±\infty或\infty) xx0+limg(x)f(x)=A(A,±)
lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) = A \displaystyle\lim_{x \to x_0^+}{\frac{f(x)}{g(x)}}=\displaystyle\lim_{x \to x_0^+}{\frac{f'(x)}{g'(x)}}=A xx0+limg(x)f(x)=xx0+limg(x)f(x)=A
在这里插入图片描述
在这里插入图片描述

(3)其他类型的不定式极限:

不定式极限还有 0 ⋅ ∞ , 1 ∞ , 0 0 , ∞ 0 , ∞ − ∞ 0·\infty,1^\infty,0^0,\infty^0,\infty-\infty 0,1,00,0,等类型,经过简单变换,这些类型一般均可变为 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型不定式极限
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(4)数列的不定式极限:

可利用函数极限的归结原则,通过先求相应形式的函数极限而得到结果
=而不能直接在数列形式下应用洛必达法则,因为对离散变量 n ∈ N + n∈N_+ nN+,求导数没有意义

四.泰勒公式
1.泰勒多项式(Taylor Series):

在这里插入图片描述
对一般函数f,如果其在x0处存在直到n阶的导数,由这些导数构造1个n次多项式: T n ( x ) = ∑ k = 0 n [ f ( k ) ( x 0 ) k ! ( x − x 0 ) k ] ( 2 ) T_n(x)=\displaystyle \sum^{n}_{k=0}[{\frac{f^{(k)}(x_0)}{k!}}(x-x_0)^k]\qquad(2) Tn(x)=k=0n[k!f(k)(x0)(xx0)k](2),该多项式被称为在x0泰勒多项式,各项的系数 f ( k ) ( x 0 ) k ! \frac{f^{(k)}(x_0)}{k!} k!f(k)(x0)称为泰勒系数
易知f(x)与其泰勒多项式Tn(x)在x0处有相同的函数值和相同的直到n阶的导数,即: f ( k ) ( x 0 ) = T n ( k ) ( x 0 ) ( k = 1 , 2... n ) ( 3 ) f^{(k)}(x_0)=T^{(k)}_n(x_0)(k=1,2...n)\qquad(3) f(k)(x0)=Tn(k)(x0)(k=1,2...n)(3)
下面证明 f ( x ) − T n ( x ) = o ( ( x − x 0 ) n ) f(x)-T_n(x)=o((x-x_0)^n) f(x)Tn(x)=o((xx0)n),即用泰勒多项式逼近 f ( x ) f(x) f(x)时,其误差为(x-x0)n的高阶无穷小量

2.带有皮亚诺余项的泰勒公式(Taylor’s Formula with Peano Type Remainder)
(1)一般情况:

定理6.9:若函数f(x)在x0处∃直至n阶的导数,则有 f ( x ) = T n ( x ) + o ( ( x − x 0 ) n ) f(x)=T_n(x)+o((x-x_0)^n) f(x)=Tn(x)+o((xx0)n),即 T n ( x ) = ∑ k = 0 n [ f ( k ) ( x 0 ) k ! ( x − x 0 ) k ] + o ( ( x − x 0 ) n ) ( 4 ) T_n(x)=\displaystyle \sum^{n}_{k=0}[{\frac{f^{(k)}(x_0)}{k!}}(x-x_0)^k]+o((x-x_0)^n)\qquad(4) Tn(x)=k=0n[k!f(k)(x0)(xx0)k]+o((xx0)n)(4)该式称为函数 f f f在x0带有皮亚诺余项的泰勒公式,形如o((x-x_0)^n)的余项称为皮亚诺型余项
在这里插入图片描述

注1:若 f ( x ) f(x) f(x)在x0附近满足 f ( x ) = p n ( x ) + o ( ( x − x 0 ) n ) ( p n ( x ) 为 ( 1 ) 式 所 示 的 n 阶 多 项 式 ) ( 5 ) f(x)=p_n(x)+o((x-x_0)^n)(p_n(x)为(1)式所示的n阶多项式)\qquad(5) f(x)=pn(x)+o((xx0)n)(pn(x)(1)n)(5)这不意味着 p n ( x ) p_n(x) pn(x)一定是 f f f的泰勒多项式,如: f ( x ) = x n + 1 D ( x ) ( n ∈ N + , D ( x ) 为 狄 利 克 雷 函 数 ) f(x)=x^{n+1}D(x)(n∈N_+,D(x)为狄利克雷函数) f(x)=xn+1D(x)(nN+,D(x))f(x)在x=0处除了f’(0)=0外没有其他任何阶导数,因此无法构建高于1次的 T n ( x ) T_n(x) Tn(x),但因: lim ⁡ x → 0 f ( x ) x n = lim ⁡ x → 0 x D ( x ) = 0 , 即 f ( x ) = o ( x n ) \displaystyle\lim_{x \to 0}{\frac{f(x)}{x^n}}=\displaystyle\lim_{x \to 0}{xD(x)}=0,即f(x)=o(x^n) x0limxnf(x)=x0limxD(x)=0,f(x)=o(xn)故若取 P n ( x ) = 0 + 0 ⋅ x + . . . + 0 ⋅ x n ≡ 0 P_n(x)=0+0·x+...+0·x^n\equiv0 Pn(x)=0+0x+...+0xn0,则(5)式对 ∀ n ∈ N + ∀n∈N_+ nN+恒成立

注2:满足(5)式的n次逼近多项式 P n ( x ) 是 唯 一 的 P_n(x)是唯一的 Pn(x)
综合定理6.9和注2,满足定理6.9的条件时,满足(5)式的逼近多项式 p n ( x ) p_n(x) pn(x)只可能是 f f f的泰勒多项式 T n ( x ) T_n(x) Tn(x)

(2)在 x 0 = 0 x_0=0 x0=0处的情况:

x 0 = 0 x_0=0 x0=0处的特殊形式为: f ( x ) = ∑ k = 0 n [ f ( k ) ( x 0 ) k ! x k ] + o ( x n ) ( 6 ) f(x)=\displaystyle \sum^{n}_{k=0}[{\frac{f^{(k)}(x_0)}{k!}}x^k]+o(x^n)\qquad(6) f(x)=k=0n[k!f(k)(x0)xk]+o(xn)(6)该式称为带有皮亚诺余项的麦克劳林公式(Maclaurin’s Formula ~)

(3)常用的带有皮亚诺余项的麦克劳林公式:

e x = ∑ k = 0 n x k k ! + o ( x n ) e^x=\displaystyle \sum^{n}_{k=0}{\frac{x^k}{k!}}+o(x^n) ex=k=0nk!xk+o(xn)
s i n x = ∑ k = 0 n ( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! + o ( x 2 ( n + 1 ) ) sinx=\displaystyle \sum^{n}_{k=0}{(-1)^k\frac{x^{2k+1}}{(2k+1)!}}+o(x^{2(n+1)}) sinx=k=0n(1)k(2k+1)!x2k+1+o(x2(n+1))
在这里插入图片描述
c o s x = ∑ k = 0 n ( − 1 ) k x 2 k ( 2 k ) ! + o ( x 2 n + 1 ) cosx=\displaystyle \sum^{n}_{k=0}{(-1)^k\frac{x^{2k}}{(2k)!}}+o(x^{2n+1}) cosx=k=0n(1)k(2k)!x2k+o(x2n+1)
l n ( 1 + x ) = ∑ k = 1 n ( − 1 ) k − 1 x k k + o ( x n ) ln(1+x)=\displaystyle \sum^{n}_{k=1}{(-1)^{k-1}\frac{x^k}{k}}+o(x^{n}) ln(1+x)=k=1n(1)k1kxk+o(xn)
在这里插入图片描述
( 1 + x ) α = 1 + ∑ k = 1 n [ ∏ i = 0 k − 1 ( α − i ) k ! x k ] + o ( x n ) (1+x)^α=1+\displaystyle \sum^{n}_{k=1}{[\frac{\displaystyle\prod_{i=0}^{k-1}{(α-i)}}{k!}x^k]}+o(x^n) (1+x)α=1+k=1n[k!i=0k1(αi)xk]+o(xn)
1 1 − x = ∑ k = 0 n x k + o ( x n ) \frac{1}{1-x}=\displaystyle \sum^{n}_{k=0}{x^k}+o(x^n) 1x1=k=0nxk+o(xn)

3.带有拉格朗日余项的泰勒公式(~ with Lagrange Type Remainder)
(1)一般情况:

泰勒定理(定理6.10):若函数 f f f在[a,b]上∃直至n阶的连续导函数,在(a,b)上∃(n+1)阶的导函数,则对∀给定的x,x0∈[a,b],至少∃1点 ξ ∈ ( a , b ) \xi∈(a,b) ξ(a,b),使: f ( x ) = ∑ k = 0 n [ f ( k ) ( x 0 ) k ! ( x − x 0 ) k ] + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( 7 ) f(x)=\displaystyle \sum^{n}_{k=0}[{\frac{f^{(k)}(x_0)}{k!}}(x-x_0)^k]+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\qquad(7) f(x)=k=0n[k!f(k)(x0)(xx0)k]+(n+1)!f(n+1)(ξ)(xx0)n+1(7)(7)式称为带有拉格朗日余项的泰勒公式,余项 R n ( x ) = f ( x ) − T n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , R_n(x)=f(x)-T_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}, Rn(x)=f(x)Tn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1, 其 中 ξ = x 0 + θ ( x − x 0 ) ( 0 < θ < 1 ) 其中\xi=x_0+\theta(x-x_0)(0<\theta <1) ξ=x0+θ(xx0)(0<θ<1)称为拉格朗日型余项
在这里插入图片描述

注意:当n=0,(7)式记为拉格朗日中值公式 f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) f(x)-f(x_0)=f'(\xi)(x-x_0) f(x)f(x0)=f(ξ)(xx0)故泰勒定理可看作拉格朗日中值定理的推广

(2)在 x 0 = 0 x_0=0 x0=0处的情况:

x 0 = 0 x_0=0 x0=0处的特殊形式为: f ( x ) = ∑ k = 0 n [ f ( k ) ( x 0 ) k ! x k ] + o ( x n ) + f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 ( 0 < θ < 1 ) ( 8 ) f(x)=\displaystyle \sum^{n}_{k=0}[{\frac{f^{(k)}(x_0)}{k!}}x^k]+o(x^n)+\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}(0<\theta <1)\qquad(8) f(x)=k=0n[k!f(k)(x0)xk]+o(xn)+(n+1)!f(n+1)(θx)xn+1(0<θ<1)(8)该式称为带有拉格朗日余项的麦克劳林公式(Maclaurin’s Formula with Lagrange Type Remainder)

(3)常用的带有拉格朗日余项的麦克劳林公式:

e x = ∑ k = 0 n x k k ! + e θ x ( n + 1 ) ! x n + 1 ( 0 < θ < 1 , x ∈ R ) e^x=\displaystyle \sum^{n}_{k=0}{\frac{x^k}{k!}}+\frac{e^{\theta x}}{(n+1)!}x^{n+1}(0<\theta <1,x∈R) ex=k=0nk!xk+(n+1)!eθxxn+1(0<θ<1,xR)
s i n x = ∑ k = 0 n ( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! + ( − 1 ) n + 1 c o s   θ x ( 2 n + 3 ) ! x 2 n + 3 ( 0 < θ < 1 , x ∈ R ) sinx=\displaystyle \sum^{n}_{k=0}{(-1)^k\frac{x^{2k+1}}{(2k+1)!}}+(-1)^{n+1}\frac{cos\,\theta x}{(2n+3)!}x^{2n+3}(0<\theta <1,x∈R) sinx=k=0n(1)k(2k+1)!x2k+1+(1)n+1(2n+3)!cosθxx2n+3(0<θ<1,xR)
c o s x = ∑ k = 0 n ( − 1 ) k x 2 k ( 2 k ) ! + ( − 1 ) n + 1 c o s   θ x ( 2 n + 2 ) x 2 n + 2 ( 0 < θ < 1 , x ∈ R ) cosx=\displaystyle \sum^{n}_{k=0}{(-1)^k\frac{x^{2k}}{(2k)!}}+(-1)^{n+1}\frac{cos\,\theta x}{(2n+2)}x^{2n+2}(0<\theta <1,x∈R) cosx=k=0n(1)k(2k)!x2k+(1)n+1(2n+2)cosθxx2n+2(0<θ<1,xR)
l n ( 1 + x ) = ∑ k = 1 n ( − 1 ) k − 1 x k k + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + θ x ) n + 1 ( 0 < θ < 1 , x > − 1 ) ln(1+x)=\displaystyle \sum^{n}_{k=1}{(-1)^{k-1}\frac{x^k}{k}}+(-1)^n\frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}}(0<\theta <1,x>-1) ln(1+x)=k=1n(1)k1kxk+(1)n(n+1)(1+θx)n+1xn+1(0<θ<1,x>1)
( 1 + x ) α = 1 + ∑ k = 1 n [ ∏ i = 0 k − 1 ( α − i ) k ! x k ] + ∏ i = 0 n ( α − i ) ( n + 1 ) ! ( 1 + θ x ) α − n − 1 x n + 1 ( 0 < θ < 1 , x > − 1 ) (1+x)^α=1+\displaystyle \sum^{n}_{k=1}{[\frac{\displaystyle\prod_{i=0}^{k-1}{(α-i)}}{k!}x^k]}+\frac{\displaystyle\prod_{i=0}^{n}{(\alpha-i)}}{(n+1)!}{(1+\theta x)^{\alpha-n-1}x^{n+1}}(0<\theta <1,x>-1) (1+x)α=1+k=1n[k!i=0k1(αi)xk]+(n+1)!i=0n(αi)(1+θx)αn1xn+1(0<θ<1,x>1)
1 1 − x = ∑ k = 0 n x k + x n + 1 ( 1 − θ x ) n + 2 ( 0 < θ < 1 , ∣ x ∣ < 1 ) \frac{1}{1-x}=\displaystyle \sum^{n}_{k=0}{x^k}+\frac{x^{n+1}}{(1-\theta x)^{n+2}}(0<\theta <1,|x|<1) 1x1=k=0nxk+(1θx)n+2xn+1(0<θ<1,x<1)

4.泰勒公式可应用于近似计算:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
五.对函数图像的研究

①求函数的定义域
②考察函数的奇偶性/周期性
③找到函数的某些特殊点,如与坐标轴的交点/不连续点/不可导点/极值点
④确定函数的单调区间/极值点/凸性区间/拐点
⑤考察渐近线
⑥绘制图像

1.极值判别
(1)极值的第一充分条件:

定理6.11:设 f f f在x0处连续,在某U°(x0;δ)上可导,则 ①若 x ∈ ( x 0 − δ , x 0 ) x∈(x_0-\delta,x_0) x(x0δ,x0) f ′ ( x ) ≤ 0 f'(x)≤0 f(x)0, x ∈ ( x 0 , x 0 + δ ) 时 f ′ ( x ) ≥ 0 x∈(x_0,x_0+\delta)时f'(x)≥0 x(x0,x0+δ)f(x)0,则 f f f在x0取得极小值 ②若 x ∈ ( x 0 − δ , x 0 ) x∈(x_0-\delta,x_0) x(x0δ,x0) f ′ ( x ) ≥ 0 f'(x)≥0 f(x)0, x ∈ ( x 0 , x 0 + δ ) 时 f ′ ( x ) ≤ 0 x∈(x_0,x_0+\delta)时f'(x)≤0 x(x0,x0+δ)f(x)0,则 f f f在x0取得极大值
在这里插入图片描述

(2)极值的第二充分条件:

定理6.12:设 f f f在某U(x0;δ)上一阶可导,在x=x0处二阶可导,且f’(x0)=0,f’’(x0)≠0,则 ①若f’’(x0)<0,则f在x0取得极大值 ②若f’’(x0)>0,则f在x0取得极小值
在这里插入图片描述
在这里插入图片描述

(2)极值的第三充分条件:

定理6.13:设 f f f在某U(x0;δ)上∃直到n-1阶的导函数,在x0处n阶可导,且 f ( k ) ( x 0 ) = 0 ( k = 1 , 2... n − 1 ) , f ( n ) ≠ 0 f^{(k)}(x_0)=0(k=1,2...n-1),f^{(n)}≠0 f(k)(x0)=0(k=1,2...n1),f(n)=0,则 ①当n为偶数,f在x0处取得极值,且当 f ( n ) ( x 0 ) < 0 f^{(n)}(x_0)<0 f(n)(x0)<0时取极大值, f ( n ) ( x 0 ) > 0 f^{(n)}(x_0)>0 f(n)(x0)>0时取极小值 ②当n为奇数,f在x0处不取极值
该定理的证明类似于定理6.12

2.函数的最大/小值:
在这里插入图片描述
3.函数的凸性
(1)凸性:
在这里插入图片描述
在这里插入图片描述

延森不等式(Jensen Inequality):定义1的一般形式
f f f为[a,b]上的凸函数,则对 ∀ x i ∈ [ a , b ] , λ i > 0 ( i = 1 , 2... n ) , ∑ i = 1 n λ i = 1 ∀x_i∈[a,b],λ_i>0(i=1,2...n),\displaystyle\sum_{i=1}^n{λ_i}=1 xi[a,b],λi>0(i=1,2...n),i=1nλi=1,有 f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) f(\displaystyle\sum_{i=1}^n{λ_ix_i})≤\displaystyle\sum_{i=1}^n{λ_if(x_i)} f(i=1nλixi)i=1nλif(xi)
在这里插入图片描述

(2)引理:

f为区间I上的凸函数的充要条件是:对于I上的∀3点 x 1 < x 2 < x 3 x_1<x_2<x_3 x1<x2<x3,总有 f ( x 2 ) − f ( x 1 ) x 2 − x 1 ≤ f ( x 3 ) − f ( x 2 ) x 3 − x 2 \frac{f(x_2)-f(x_1)}{x_2-x_1}≤\frac{f(x_3)-f(x_2)}{x_3-x_2} x2x1f(x2)f(x1)x3x2f(x3)f(x2)
在这里插入图片描述
在这里插入图片描述

(3)定理6.14:

设f为区间I上的可导函数,则下述论断互相等价:
①f为I上的凸函数
②f’为I上的增函数
③对I上∀2点 x 1 , x 2 x_1,x_2 x1,x2,有 f ( x 2 ) ≥ f ( x 1 ) + f ′ ( x 1 ) ( x 2 − x 1 ) ( 5 ) f(x_2)≥f(x_1)+f'(x_1)(x_2-x_1)\qquad(5) f(x2)f(x1)+f(x1)(x2x1)(5)
在这里插入图片描述
在这里插入图片描述
论断③的几何意义是:曲线y=f(x)总在它的∀切线的上方,这是可导凸函数的几何特征
对凹函数,也有类似的结论

(4)定理6.15:

设f为区间I上的二阶可导函数,则在I上f为凸(凹)函数的充要条件是: f ′ ′ ( x ) ≥ 0 ( ≤ 0 ) , x ∈ I f''(x)≥0(≤0),x∈I f(x)0(0),xI

4.函数的拐点
(1)拐点的定义:
在这里插入图片描述
(2)拐点的必要条件:

定理6.16:若f在x0处二阶可导,则(x0,f(x0))为曲线y=f(x)的拐点的必要条件是f’’(x0)=0

(3)拐点的充分条件:

定理6.17:若ff在x0处可导,在某U°(x0)上二阶可导,若在 U ° + ( x 0 ) 和 U ° − ( x 0 ) U°_+(x_0)和U°_-(x_0) U°+(x0)U°(x0)上f’’(x)的符号相反,则(x0,f(x0))为曲线y=f(x)的拐点
注意:若(x0,f(x0))是曲线y=f(x)的拐点,y=f(x)在x0的导数不一定存在,如 y = x 1 3 y=x^{\frac{1}{3}} y=x31在x=0处的情况

六.用牛顿切线法求方程的近似解
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值