Flink 流处理 API

1.Environment
getExecutionEnvironment
创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则
此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法
返回此集群的执行环境,也就是说,getExecutionEnvironment 会根据查询运行的方
式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironment
如果没有设置并行度,会以 flink-conf.yaml 中的配置为准,默认是 1。

createLocalEnvironment
返回本地执行环境,需要在调用时指定默认的并行度
val env = StreamExecutionEnvironment.createLocalEnvironment(1)
createRemoteEnvironment
返回集群执行环境,将 Jar 提交到远程服务器。需要在调用时指定 JobManager
的 IP 和端口号,并指定要在集群中运行的 Jar 包。
val env = ExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123,"YOURPATH//wordcount.jar")
Source
2.从集合读取数据
// 定义样例类,传感器 id,时间戳,温度
case class SensorReading(id: String, timestamp: Long, temperature: Double)
object Sensor {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val stream1 = env
.fromCollection(List(
SensorReading("sensor_1", 1547718199, 35.8),
SensorReading("sensor_6", 1547718201, 15.4),
SensorReading("sensor_7", 1547718202, 6.7),
SensorReading("sensor_10", 1547718205, 38.1)
))
stream1.print("stream1:").setParallelism(1)
env.execute()
}
}
从文件读取数据
val stream2 = env.readTextFile("YOUR_FILE_PATH")
// 从文件中读取数据
val inputPath = "sensor.txt"
val stream2 = env.readTextFile(inputPath)
读kafka 的数据
需要引入 kafka 连接器的依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.12</artifactId>
<version>1.10.1</version>
</dependency>
核心代码
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
//properties.setProperty("group.id", "consumer-group")
//properties.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
//properties.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
//properties.setProperty("auto.offset.reset", "latest")
//第一个参数是topic名
val stream3 = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
自定义 Source
除了以上的 source 数据来源,我们还可以自定义 source。需要做的,只是传入一个 SourceFunction 就可以。具体调用如
val stream4 = env.addSource( new MySensorSource() )
我们希望可以随机生成传感器数据,MySensorSource 具体的代码实现如下
// 自定义SourceFunction
class MySensorSource() extends SourceFunction[SensorReading]{
// 定义一个标识位flag,用来表示数据源是否正常运行发出数据
var running: Boolean = true
override def cancel(): Unit = running = false
override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
// 定义一个随机数发生器
val rand = new Random()
// 随机生成一组(10个)传感器的初始温度: (id,temp)
var curTemp = 1.to(10).map( i => ("sensor_" + i, rand.nextDouble() * 100) )
// 定义无限循环,不停地产生数据,除非被cancel
while(running){
// 在上次数据基础上微调,更新温度值
curTemp = curTemp.map(
data => (data._1, data._2 + rand.nextGaussian())
)
// 获取当前时间戳,加入到数据中,调用ctx.collect发出数据
val curTime = System.currentTimeMillis()
curTemp.foreach(
data => ctx.collect(SensorReading(data._1, curTime, data._2))
)
// 间隔500ms
Thread.sleep(500)
}
}
}
Transform
转换算子
map
val streamMap = stream.map { x => x * 2 }
flatMap
flatMap 的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]
例如: flatMap(List(1,2,3))(i ⇒ List(i,i))
结果是List(1,1,2,2,3,3), 而 List("a b", "c d").flatMap(line ⇒ line.split(" "))
结果是List(a, b, c, d)。
val streamFlatMap = stream.flatMap{
x => x.split(" ")
}
Filter
//符合条件的保留,不符合过滤掉
val streamFilter = stream.filter{
x => x == 1
}
KeyBy
DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分
区包含具有相同 key 的元素,在内部以 hash 的形式实现的
滚动聚合算子(Rolling Aggregation)
这些算子可以针对 KeyedStream 的每一个支流做聚合。
- sum()
- min()
- max()
- minBy()
- maxBy()
reduce
KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。
val stream2 = env.readTextFile("YOUR_PATH\\sensor.txt")
.map( data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong,
dataArray(2).trim.toDouble)
})
.keyBy("id")
.reduce( (x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature) )
Split 和 Select

DataStream → SplitStream:根据某些特征把一个 DataStream 拆分成两个或者
多个 DataStream。
SplitStream→DataStream:从一个 SplitStream 中获取一个或者多个
DataStream
需求:传感器数据按照温度高低(以 30 度为界),拆分成两个流。
val splitStream = stream2.split( sensorData => {
if (sensorData.temperature > 30) Seq("high") else Seq("low")
} )
val high = splitStream.select("high")
val low = splitStream.select("low")
val all = splitStream.select("high", "low")
Connect 和 CoMap
connect

DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数
据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持
各自的数据和形式不发生任何变化,两个流相互独立。
CoMap,CoFlatM

ConnectedStreams → DataStream:作用于 ConnectedStreams 上,功能与 map和 flatMap 一样,对 ConnectedStreams 中的每一个 Stream 分别进行 map 和 flatMap处理
val warning = high.map( sensorData => (sensorData.id,
sensorData.temperature) )
val connected = warning.connect(low)
val coMap = connected.map(
warningData => (warningData._1, warningData._2, "warning"),
lowData => (lowData.id, "healthy")
)
Union

DataStream → DataStream:对两个或者两个以上的 DataStream 进行 union 操
作,产生一个包含所有 DataStream 元素的新 DataStream。
//合并以后打印
val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream)
unionStream.print("union:::")
Connect 与 Union 区别:
Union 之前两个流的类型必须是一样,Connect 可以不一样,在之后的 coMap
中再去调整成为一样的。
Connect 只能操作两个流,Union 可以操作多个
3.支持的数据类型
Flink 流应用程序处理的是以数据对象表示的事件流。所以在 Flink 内部,我们需要能够处理这些对象。它们需要被序列化和反序列化,以便通过网络传送它们;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点,Flink 需要明确知道应用程序所处理的数据类型。Flink 使用类型信息的概念来表示数据类型,为每个数据类型生成特定的序列化器、反序列化器和比较器。Flink 还具有一个类型提取系统,该系统分析函数的输入和返回类型,以自动获取类型信息,从而获得序列化器和反序列化器。但是,在某些情况下,例如 lambda函数或泛型类型,需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。Flink 支持 Java 和 Scala 中所有常见数据类型。使用最广泛的类型有以下几种
基础数据类型
Flink 支持所有的 Java 和 Scala 基础数据类型,Int, Double, Long, String, …
val numbers: DataStream[Long] = env.fromElements(1L, 2L, 3L, 4L)
numbers.map( n => n + 1 )
Java 和 Scala 元组(Tuples)
val persons: DataStream[(String, Integer)] = env.fromElements(
("Adam", 17),
("Sarah", 23) )
persons.filter(p => p._2 > 18)
Scala 样例类(case classes)
case class Person(name: String, age: Int)
val persons: DataStream[Person] = env.fromElements(
Person("Adam", 17),
Person("Sarah", 23)
)
persons.filter(p => p.age > 18)
Java 简单对象(POJO
public class Person {
public String name;
public int age;
public Person() {}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
}
DataStream<Person> persons = env.fromElements(
new Person("Alex", 42),
new Person("Wendy", 23));
其它(Arrays, Lists, Maps, Enums, 等
Flink 对 Java 和 Scala 中的一些特殊目的的类型也都是支持的,比如 Java 的ArrayList,HashMap,Enum 等
4.实现 UDF 函数——更细粒度的控制流
函数类(Function Classes)
Flink 暴露了所有 udf 函数的接口(实现方式为接口或者抽象类)。例如
MapFunction, FilterFunction, ProcessFunction 等等。
下面例子实现了 FilterFunction 接口:
class FilterFilter extends FilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains("flink")
}
}
val flinkTweets = tweets.filter(new FlinkFilter)
//还可以将函数实现成匿名类
val flinkTweets = tweets.filter(
new RichFilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains("flink")
}
}
)
//我们 filter 的字符串"flink"还可以当作参数传进去
val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(new KeywordFilter("flink"))
class KeywordFilter(keyWord: String) extends FilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains(keyWord)
}
}
匿名函数(Lambda Functions)
val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(_.contains("flink"))
富函数(Rich Functions)
“富函数”是 DataStream API 提供的一个函数类的接口,所有 Flink 函数类都
有其 Rich 版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一
些生命周期方法,所以可以实现更复杂的功能。
-
RichMapFunction
-
RichFlatMapFunction
-
RichFilterFunction
-
RichFunction 有一个生命周期的概念。典型的生命周期方法有:
- ==open()==方法是 rich function 的初始化方法,当一个算子例如 map 或者 filter被调用之前 open()会被调用。
- ==close()==方法是生命周期中的最后一个调用的方法,做一些清理工作。getRuntimeContext()方法提供了函数的 RuntimeContext 的一些信息,例如函数执行的并行度,任务的名字,以及 state 状态.
// 富函数,可以获取到运行时上下文,还有一些生命周期
class MyRichMapper extends RichMapFunction[SensorReading, String]{
override def open(parameters: Configuration): Unit = {
// 做一些初始化操作,比如数据库的连接
// getRuntimeContext
}
override def map(value: SensorReading): String = value.id + " temperature"
override def close(): Unit = {
// 一般做收尾工作,比如关闭连接,或者清空状态
}
}
class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)] {
var subTaskIndex = 0
override def open(configuration: Configuration): Unit = {
subTaskIndex = getRuntimeContext.getIndexOfThisSubtask
// 以下可以做一些初始化工作,例如建立一个和 HDFS 的连接
}
override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
if (in % 2 == subTaskIndex) {
out.collect((subTaskIndex, in))
}
}
override def close(): Unit = {
// 以下做一些清理工作,例如断开和 HDFS 的连接。
}
}
5.Sink
Flink 没有类似于 spark 中 foreach 方法,让用户进行迭代的操作。虽有对外的输出操作都要利用 Sink 完成。最后通过类似如下方式完成整个任务最终输出操
stream.addSink(new MySink(xxxx))
官方提供了一部分的框架的 sink。除此以外,需要用户自定义实现 sink。

文件sink
文件sensor.txt
sensor_1,1547718199,35.8
sensor_6,1547718201,15.4
sensor_7,1547718202,6.7
sensor_10,1547718205,38.1
sensor_1,1547718206,32
sensor_1,1547718208,36.2
sensor_1,1547718210,29.7
sensor_1,1547718213,30.9
保存为文本文件
object FileSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 读取数据
val inputPath = "sensor.txt"
val inputStream = env.readTextFile(inputPath)
// 先转换成样例类类型(简单转换操作)
val dataStream = inputStream
.map( data => {
val arr = data.split(",")
SensorReading(arr(0), arr(1).toLong, arr(2).toDouble)
} )
dataStream.print()
// dataStream.writeAsCsv("数据路径+输出文件名")
dataStream.addSink(
StreamingFileSink.forRowFormat(
new Path("数据路径+输出文件名"),
new SimpleStringEncoder[SensorReading]()
).build()
)
env.execute("file sink test")
}
}
// 定义样例类,温度传感器
case class SensorReading( id: String, timestamp: Long, temperature: Double )
Kafka
pom.xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.12</artifactId>
<version>1.10.1</version>
</dependency>
代码:
object KafkaSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 读取数据
// val inputPath = "sensor.txt"
// val inputStream = env.readTextFile(inputPath)
// 从kafka读取数据
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
val stream = env.addSource( new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties) )
// 先转换成样例类类型(简单转换操作)
val dataStream = stream
.map( data => {
val arr = data.split(",")
SensorReading(arr(0), arr(1).toLong, arr(2).toDouble).toString
} )
dataStream.addSink(new FlinkKafkaProducer011[String]("localhost:9092", "sinktest", new SimpleStringSchema()) )
env.execute("kafka sink test")
}
}
核心
env.addSource( new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties) )
dataStream.addSink( new FlinkKafkaProducer011[String]("localhost:9092", "sinktest", new SimpleStringSchema()))
Redis
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
</dependency>
定义一个 redis 的 mapper 类,用于定义保存到 redis 时调用的命令
// 定义一个RedisMapper
class MyRedisMapper extends RedisMapper[SensorReading]{
// 定义保存数据写入redis的命令,HSET 表名 key value
override def getCommandDescription: RedisCommandDescription = {
new RedisCommandDescription(RedisCommand.HSET, "sensor_temp")
}
// 将温度值指定为value
override def getValueFromData(data: SensorReading): String = data.temperature.toString
// 将id指定为key
override def getKeyFromData(data: SensorReading): String = data.id
}
在主函数中调用:
object RedisSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 读取数据
val inputPath = "sensor.txt"
val inputStream = env.readTextFile(inputPath)
// 先转换成样例类类型(简单转换操作)
val dataStream = inputStream
.map( data => {
val arr = data.split(",")
SensorReading(arr(0), arr(1).toLong, arr(2).toDouble)
} )
// 定义一个FlinkJedisConfigBase
val conf = new FlinkJedisPoolConfig.Builder()
.setHost("localhost")
.setPort(6379)
.build()
dataStream.addSink( new RedisSink[SensorReading]( conf, new MyRedisMapper ) )
env.execute("redis sink test")
}
}
Elasticsearch
pom.xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch6_2.12</artifactId>
<version>1.10.1</version>
</dependency>
object EsSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 读取数据
val inputPath = "sensor.txt"
val inputStream = env.readTextFile(inputPath)
// 先转换成样例类类型(简单转换操作)
val dataStream = inputStream
.map(data => {
val arr = data.split(",")
SensorReading(arr(0), arr(1).toLong, arr(2).toDouble)
})
// 定义HttpHosts
val httpHosts = new util.ArrayList[HttpHost]()
httpHosts.add(new HttpHost("localhost", 9200))
// 自定义写入es的EsSinkFunction
val myEsSinkFunc = new ElasticsearchSinkFunction[SensorReading] {
override def process(t: SensorReading, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
// 包装一个Map作为data source
val dataSource = new util.HashMap[String, String]()
dataSource.put("id", t.id)
dataSource.put("temperature", t.temperature.toString)
dataSource.put("ts", t.timestamp.toString)
// 创建index request,用于发送http请求
val indexRequest = Requests.indexRequest()
.index("sensor")
.`type`("readingdata")
.source(dataSource)
// 用indexer发送请求
requestIndexer.add(indexRequest)
}
}
dataStream.addSink(new ElasticsearchSink
.Builder[SensorReading](httpHosts, myEsSinkFunc)
.build()
)
env.execute("es sink test")
}
}
Mysql(JDBC 自定义 sink)
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency
代码:
object JdbcSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 读取数据
val inputPath = "sensor.txt"
val inputStream = env.readTextFile(inputPath)
val stream = env.addSource( new MySensorSource() )
// 先转换成样例类类型(简单转换操作)
val dataStream = inputStream
.map(data => {
val arr = data.split(",")
SensorReading(arr(0), arr(1).toLong, arr(2).toDouble)
})
stream.addSink( new MyJdbcSinkFunc() )
env.execute("jdbc sink test")
}
}
class MyJdbcSinkFunc() extends RichSinkFunction[SensorReading]{
// 定义连接、预编译语句
var conn: Connection = _
var insertStmt: PreparedStatement = _
var updateStmt: PreparedStatement = _
override def open(parameters: Configuration): Unit = {
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456")
insertStmt = conn.prepareStatement("insert into sensor_temp (id, temp) values (?, ?)")
updateStmt = conn.prepareStatement("update sensor_temp set temp = ? where id = ?")
}
override def invoke(value: SensorReading): Unit = {
// 先执行更新操作,查到就更新
updateStmt.setDouble(1, value.temperature)
updateStmt.setString(2, value.id)
updateStmt.execute()
// 如果更新没有查到数据,那么就插入
if( updateStmt.getUpdateCount == 0 ){
insertStmt.setString(1, value.id)
insertStmt.setDouble(2, value.temperature)
insertStmt.execute()
}
}
override def close(): Unit = {
insertStmt.close()
updateStmt.close()
conn.close()
}
}
核心是自定义继承RichSinkFunciton的类
1512

被折叠的 条评论
为什么被折叠?



