目录
一、研究对象和ECG记录预处理
本研究采用Chapman大学和Shaoxing人民医院(浙江大学医学院绍兴医院)收集的12导联ECG数据库,对双模态CNN模型进行验证。在预处理阶段,对原始ECG信号进行了滤波、去除基线漂移和降噪处理。
二、机器学习和LSTM
本研究首先使用多级(5级)1-D离散小波变换(Daubechies db6)计算ECG信号的小波系数,然后从小波系数中提取各种统计特征向量。这些提取的统计特征向量作为机器学习算法的输入。评估了逻辑回归和XGBoost等机器学习算法。
目录
本研究采用Chapman大学和Shaoxing人民医院(浙江大学医学院绍兴医院)收集的12导联ECG数据库,对双模态CNN模型进行验证。在预处理阶段,对原始ECG信号进行了滤波、去除基线漂移和降噪处理。
本研究首先使用多级(5级)1-D离散小波变换(Daubechies db6)计算ECG信号的小波系数,然后从小波系数中提取各种统计特征向量。这些提取的统计特征向量作为机器学习算法的输入。评估了逻辑回归和XGBoost等机器学习算法。
1万+
4498
1万+
4160
1万+

被折叠的 条评论
为什么被折叠?