基于灰度图像和小波图的双模态卷积神经网络在心血管疾病分类中的应用

研究采用Chapman大学和Shaoxing人民医院的ECG数据库,通过预处理、1-D小波变换、将ECG转为灰度和小波图,构建双模态CNN模型。模型在心血管疾病分类上的性能优于逻辑回归、XGBoost、LSTM和单一CNN,展示了在CVD诊断中的高准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、研究对象和ECG记录预处理

二、机器学习和LSTM

三、将一维ECG记录转换为二维图像

四、双模态CNN模型

五、性能评估

参考文献


一、研究对象和ECG记录预处理

本研究采用Chapman大学和Shaoxing人民医院(浙江大学医学院绍兴医院)收集的12导联ECG数据库,对双模态CNN模型进行验证。在预处理阶段,对原始ECG信号进行了滤波、去除基线漂移和降噪处理。

二、机器学习和LSTM

本研究首先使用多级(5级)1-D离散小波变换(Daubechies db6)计算ECG信号的小波系数,然后从小波系数中提取各种统计特征向量。这些提取的统计特征向量作为机器学习算法的输入。评估了逻辑回归和XGBoost等机器学习算法。

三、将一维ECG记录转换为二维图像

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值