目录
Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
Q8:论文中的实验及结果有没有很好地支持需要验证的科学假设?
一、论文摘要
光电容积脉搏图(PPG)易于测量,并提供与心率和心律失常相关的重要参数。然而,由于容易受到运动伪迹的影响以及个体之间波形特征的差异,尚未开发出自动化PPG方法。随着远程医疗的日益普及,人们越来越关注将深度神经网络(DNN)技术应用于大量PPG数据的高效分析。本研究是关于一种测量患者PPG并将其与之前存储的自身数据以及几个群体的平均数据进行比较的算法。通过去除PPG中的无信息区域,区分心跳和反射脉冲,将心跳波形划分为10个段,并根据每个段平均值,利用六个深度神经网络对PPG波形进行归一化。两组均使用远程医疗测量PPG数据。第1组由年龄在25至35岁之间的健康人群组成,第2组由年龄在60至75岁之间服用降压药物的患者组成。所提出的算法可以准确地确定受试者隶属于哪个群体(AUC=0.998)。另一方面,在识别个体时经常出现错误(AUC=0.819)。

本文介绍了使用深度神经网络(DNN)对光电容积脉搏图(PPG)进行归一化的研究,旨在解决自动化PPG分析的挑战。通过六种DNN模型对PPG波形进行处理,实现了个体和群体比较的高准确性(AUC=0.998),但在个体识别上表现一般(AUC=0.819)。该方法有望应用于远程医疗和健康监测领域。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



