《利用光体积描记图信号的模糊递推特性估计无袖带血压的级联卷积神经网络模型》阅读笔记

本文介绍了使用模糊递推特性结合光电容积脉搏图(PPG)信号的级联卷积神经网络模型来估计无袖带血压的研究。该模型无需循环层,通过一维和二维CNN捕获PPG的时空依赖关系,实现在公共数据集上的高性能表现,满足AAMI标准并达到BHS的A级评价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文摘要

二、论文十问

Q1:论文试图解决什么问题?

Q2:这是否是一个新的问题?

Q3:这篇文章要验证一个什么科学假设?

Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?

Q5:论文中提到的解决方案之关键是什么?

Q6:论文中的实验是如何设计的?

Q7:用于定量评估的数据集是什么?代码有没有开源?

Q8:论文中的实验及结果有没有很好地支持需要验证的科学假设?

Q9:这篇论文到底有什么贡献?

Q10:下一步呢?有什么工作可以继续深入?

三、论文亮点与不足之处

四、与其他研究的比较

五、实际应用与影响

六、个人思考与启示

参考文献


一、论文摘要

由于连续监测血压(BP)在控制高血压方面的重要性,近年来无袖血压估计这一主题得到了广泛研究。最重要的方法之一是探讨记录的外周信号与血压值之间的非线性映射,通常由深度神经网络完成。由于光电容积脉搏图(PPG)等外周信号的序列基本伪周期性质,合适的估计模型需要具备一维(1-D)和循环层。这反过来限制了在卷积神经网络(CNN)中采用二维(2-D)层嵌入模型的空间信息。在这项研究中,考虑到混沌方法的优势,通过模糊复发图(FRP)在相空间中对PPG进行视觉二维表示,考虑了外周信号的复发特性。FRP不仅为捕捉输入信号的空间属性提供了有益的框架,而且为将伪周期属性嵌入到神经模型中提供了可靠的方法,而无需使用循环层。此外,本研究提出了一种新颖的深度神经网络结构,它将从两个升级的一维和二维CNN中同时提取的形态特征相结合,捕获PPG在收缩压和舒张压估计中的时空依赖关系。模型通过两个单独的路径输入一维PPG序列和相应的二维FRP。所提出的框架在著名的公共数据集上进行了性能测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值