目录
Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
Q8:论文中的实验及结果有没有很好地支持需要验证的科学假设?
一、论文摘要
由于连续监测血压(BP)在控制高血压方面的重要性,近年来无袖血压估计这一主题得到了广泛研究。最重要的方法之一是探讨记录的外周信号与血压值之间的非线性映射,通常由深度神经网络完成。由于光电容积脉搏图(PPG)等外周信号的序列基本伪周期性质,合适的估计模型需要具备一维(1-D)和循环层。这反过来限制了在卷积神经网络(CNN)中采用二维(2-D)层嵌入模型的空间信息。在这项研究中,考虑到混沌方法的优势,通过模糊复发图(FRP)在相空间中对PPG进行视觉二维表示,考虑了外周信号的复发特性。FRP不仅为捕捉输入信号的空间属性提供了有益的框架,而且为将伪周期属性嵌入到神经模型中提供了可靠的方法,而无需使用循环层。此外,本研究提出了一种新颖的深度神经网络结构,它将从两个升级的一维和二维CNN中同时提取的形态特征相结合,捕获PPG在收缩压和舒张压估计中的时空依赖关系。模型通过两个单独的路径输入一维PPG序列和相应的二维FRP。所提出的框架在著名的公共数据集上进行了性能测试

本文介绍了使用模糊递推特性结合光电容积脉搏图(PPG)信号的级联卷积神经网络模型来估计无袖带血压的研究。该模型无需循环层,通过一维和二维CNN捕获PPG的时空依赖关系,实现在公共数据集上的高性能表现,满足AAMI标准并达到BHS的A级评价。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



