目录
一、论文摘要
在冠状动脉疾病(CAD)患者的抗血栓治疗过程中,出血事件是关注的主要焦点。本研究旨在探讨使用光电容积法(PPG)和机器学习技术评估CAD患者出血风险的潜力。从2018年1月至2019年10月,共有1638名CAD患者参加了本研究,其中114名患者观察到至少有一个阳性事件。值得注意的是,本研究最终保留了102名患者的9933条记录进行分析。参与者需要使用便携式PPG采集设备和专门设计的Android应用程序收集数据。数据被收集并上传到远程服务器。基于收集的PPG信号,我们从时域、频域和小波包分解中提取了总共30个维度的特征。建立了逻辑回归、支持向量回归、随机森林和XGBoost回归模型来实现出血风险评估,然后比较了它们的性能。总共有10个从PPG中提取的特征在阴性和阳性组之间显示出统计学意义(p < 0.01)。新建立的XGBoost模型在出血风险评估实验中表现最好,其中十折交叉验证的平均曲线下面积(AUC)为0.762 ± 0.024,敏感性和特异性分别为0.679 ± 0.051和0.714 ± 0.014。我们建立了一个用于PPG信号收集的数据采集系统,并证
研究使用光电容积描记法(PPG)和机器学习技术评估冠状动脉疾病(CAD)患者出血风险,通过PPG信号提取特征,建立的XGBoost模型在预测中表现出色,具有潜在临床应用价值。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



