《基于光电容积法和机器学习的冠状动脉疾病患者出血风险预测》阅读笔记

30 篇文章 ¥299.90 ¥399.90
研究使用光电容积描记法(PPG)和机器学习技术评估冠状动脉疾病(CAD)患者出血风险,通过PPG信号提取特征,建立的XGBoost模型在预测中表现出色,具有潜在临床应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文摘要

二、论文十问

三、论文亮点与不足之处

四、与其他研究的比较

五、实际应用与影响

六、个人思考与启示

参考文献


一、论文摘要

在冠状动脉疾病(CAD)患者的抗血栓治疗过程中,出血事件是关注的主要焦点。本研究旨在探讨使用光电容积法(PPG)和机器学习技术评估CAD患者出血风险的潜力。从2018年1月至2019年10月,共有1638名CAD患者参加了本研究,其中114名患者观察到至少有一个阳性事件。值得注意的是,本研究最终保留了102名患者的9933条记录进行分析。参与者需要使用便携式PPG采集设备和专门设计的Android应用程序收集数据。数据被收集并上传到远程服务器。基于收集的PPG信号,我们从时域、频域和小波包分解中提取了总共30个维度的特征。建立了逻辑回归、支持向量回归、随机森林和XGBoost回归模型来实现出血风险评估,然后比较了它们的性能。总共有10个从PPG中提取的特征在阴性和阳性组之间显示出统计学意义(p < 0.01)。新建立的XGBoost模型在出血风险评估实验中表现最好,其中十折交叉验证的平均曲线下面积(AUC)为0.762 ± 0.024,敏感性和特异性分别为0.679 ± 0.051和0.714 ± 0.014。我们建立了一个用于PPG信号收集的数据采集系统,并证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值