《基于EPNCC的脉搏信号特征识别与分类研究》阅读笔记

30 篇文章 ¥299.90 ¥399.90
本文介绍了使用改进的PNCC(EPNCC)方法结合小波散射从脉搏信号中提取特征,并通过卷积神经网络进行分类识别,实现了98.3%的准确率。研究基于MIT-BIH-mimic数据库,虽然具有局限性,但为脉搏信号分析提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文摘要

二、论文十问

三、论文亮点与不足之处

四、与其他研究的比较

五、实际应用与影响

六、个人思考与启示

参考文献


一、论文摘要

为了快速获取脉搏信号的完整表征信息并验证脉搏信号在相关疾病临床诊断中的敏感性和有效性。在本文中,提出了一种改进的PNCC方法作为补充特征,以实现脉搏信号的完整表征。在本文中,使用小波散射方法从脉冲信号中提取时域特征,使用基于EEMD的改进PNCC(EPNCC)从脉搏信号中提取频域特征。将时频特征混合到卷积神经网络中进行最终的分类和识别。本研究的数据来自MIT-BIH-mimic数据库,用于验证所提出方法的有效性。三种临床症状脉搏信号的实验分析显示脉搏分类和识别的准确率为98.3%。该方法在完整的脉搏表征中具有有效性,并在处理本文中使用的三种临床脉搏信号下提高了脉搏分类的准确性。

脉冲信号分类总体结构图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值