目录
一、论文摘要
为了快速获取脉搏信号的完整表征信息并验证脉搏信号在相关疾病临床诊断中的敏感性和有效性。在本文中,提出了一种改进的PNCC方法作为补充特征,以实现脉搏信号的完整表征。在本文中,使用小波散射方法从脉冲信号中提取时域特征,使用基于EEMD的改进PNCC(EPNCC)从脉搏信号中提取频域特征。将时频特征混合到卷积神经网络中进行最终的分类和识别。本研究的数据来自MIT-BIH-mimic数据库,用于验证所提出方法的有效性。三种临床症状脉搏信号的实验分析显示脉搏分类和识别的准确率为98.3%。该方法在完整的脉搏表征中具有有效性,并在处理本文中使用的三种临床脉搏信号下提高了脉搏分类的准确性。
本文介绍了使用改进的PNCC(EPNCC)方法结合小波散射从脉搏信号中提取特征,并通过卷积神经网络进行分类识别,实现了98.3%的准确率。研究基于MIT-BIH-mimic数据库,虽然具有局限性,但为脉搏信号分析提供了新思路。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



