《可穿戴监测中的数据质量评估》阅读笔记

30 篇文章 ¥299.90 ¥399.90
本文探讨了可穿戴设备在癫痫监测中的数据质量评估问题,提出了一种综合评估工具,分析了加速度计、皮肤电活动等多模态数据。尽管存在伪迹影响,但该工具能有效评估数据完整性并提高监测的可靠性,为癫痫监测提供支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文摘要

二、论文十问

三、论文亮点与不足之处

四、与其他研究的比较

五、实际应用与影响

六、个人思考与启示

参考文献


一、论文摘要

从手腕捕获的神经生理信号的可穿戴记录为癫痫监测提供了巨大的潜力。然而,数据质量仍然是影响数据可靠性的最具挑战性的因素之一。我们建议使用一种组合的数据质量评估工具来评估多模态可穿戴数据。我们分析了来自四个癫痫中心的癫痫患者的数据。患者佩戴手环记录加速度计、皮肤电活动、血容量脉冲和皮肤温度。我们计算了数据的完整性,评估设备佩戴的时间(在身上),以及特定模态的信号质量评分。我们包括了来自632名住院患者的37,166小时和来自39名门诊患者的90,776小时的数据。所有模态都受到了伪迹的影响。与设备上的记录和存储相比,使用数据流时的数据损失较高(住院队列中高达49%,分别在各自的记录中平均)。在身上的评分,估计设备在身上佩戴的时间百分比,在各个队列中始终较高(超过80%)。基于已建立的指数,某些模态的信号质量在夜间高于白天。一个统一报告的数据质量和多模态信号质量指数是可行的,使研究结果更具可比性,并有助于开发设备和评估程序,以进行癫痫监测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值