目录
一、论文摘要
从手腕捕获的神经生理信号的可穿戴记录为癫痫监测提供了巨大的潜力。然而,数据质量仍然是影响数据可靠性的最具挑战性的因素之一。我们建议使用一种组合的数据质量评估工具来评估多模态可穿戴数据。我们分析了来自四个癫痫中心的癫痫患者的数据。患者佩戴手环记录加速度计、皮肤电活动、血容量脉冲和皮肤温度。我们计算了数据的完整性,评估设备佩戴的时间(在身上),以及特定模态的信号质量评分。我们包括了来自632名住院患者的37,166小时和来自39名门诊患者的90,776小时的数据。所有模态都受到了伪迹的影响。与设备上的记录和存储相比,使用数据流时的数据损失较高(住院队列中高达49%,分别在各自的记录中平均)。在身上的评分,估计设备在身上佩戴的时间百分比,在各个队列中始终较高(超过80%)。基于已建立的指数,某些模态的信号质量在夜间高于白天。一个统一报告的数据质量和多模态信号质量指数是可行的,使研究结果更具可比性,并有助于开发设备和评估程序,以进行癫痫监测。
本文探讨了可穿戴设备在癫痫监测中的数据质量评估问题,提出了一种综合评估工具,分析了加速度计、皮肤电活动等多模态数据。尽管存在伪迹影响,但该工具能有效评估数据完整性并提高监测的可靠性,为癫痫监测提供支持。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



