《手腕光电容积图智能手表对房颤检测的录制长度和其他心律失常的影响》阅读笔记

30 篇文章 ¥299.90 ¥399.90
本文分析了使用智能手表手腕光电容积图(PPG)检测房颤(AF)的研究,发现25次心跳的PPI分析在检测准确性上表现最佳,具有区分AF和其他心律失常的能力。机器学习算法增强了PPG数据的分析,为非侵入性AF检测提供新途径。研究限制于特定患者群体,未来需进一步验证普适性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文摘要

二、论文十问

三、论文亮点与不足之处

四、与其他研究的比较

五、实际应用与影响

六、个人思考与启示

参考文献


一、论文摘要

本研究旨在评估手腕光电容积图(PPG)的定量分析是否能检测到房颤(AF)。使用心电生理记录系统记录连续心电图,并使用佩戴在手腕上的智能手表收集PPG,从接受导管消融或电击复律治療的患者那里同时收集。从拆分片段的10、25、40和80次心跳中提取PPG特征。利用支持向量机和随机森林方法进行机器学习以检测AF。共评估了116名患者。我们标注了> 117小时的PPG。共有6475段和3957段25次心跳的脉搏间隔(PPI)分别被标注为AF和窦性节律。25个PPI的准确性产生了测试接收者操作特征曲线(AUC)下的面积为0.9676,这明显优于10个PPI的AUC(0.9453;P < .001)。从另外38名具有频繁室性/房性早搏(PVCs/PACs)的患者那里获得的PPG用于评估其他心律失常对诊断准确性的影响。新的AF检测算法实现了0.9680的AUC。PPG优化分析程序的适当数据长度为25次心跳。使用机器学习方法进行算法修改显示出对PVCs/PACs的稳健性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值