目录
一、论文摘要
本研究旨在评估手腕光电容积图(PPG)的定量分析是否能检测到房颤(AF)。使用心电生理记录系统记录连续心电图,并使用佩戴在手腕上的智能手表收集PPG,从接受导管消融或电击复律治療的患者那里同时收集。从拆分片段的10、25、40和80次心跳中提取PPG特征。利用支持向量机和随机森林方法进行机器学习以检测AF。共评估了116名患者。我们标注了> 117小时的PPG。共有6475段和3957段25次心跳的脉搏间隔(PPI)分别被标注为AF和窦性节律。25个PPI的准确性产生了测试接收者操作特征曲线(AUC)下的面积为0.9676,这明显优于10个PPI的AUC(0.9453;P < .001)。从另外38名具有频繁室性/房性早搏(PVCs/PACs)的患者那里获得的PPG用于评估其他心律失常对诊断准确性的影响。新的AF检测算法实现了0.9680的AUC。PPG优化分析程序的适当数据长度为25次心跳。使用机器学习方法进行算法修改显示出对PVCs/PACs的稳健性。
本文分析了使用智能手表手腕光电容积图(PPG)检测房颤(AF)的研究,发现25次心跳的PPI分析在检测准确性上表现最佳,具有区分AF和其他心律失常的能力。机器学习算法增强了PPG数据的分析,为非侵入性AF检测提供新途径。研究限制于特定患者群体,未来需进一步验证普适性。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



