目录
0 演绎学习
在本文中,DL指的是Deduction Learning,即演绎学习方法。该方法是一种机器学习方法,通过使用逻辑推理和归纳推理来构建模型。与传统的归纳学习方法不同,演绎学习方法可以利用领域知识和先验信息来提高模型的训练效率和泛化能力。在本文中,作者使用演绎学习方法来训练个性化模型,以实现精确无创血糖测量的目标。
1 论文摘要
个性化建模长期以来一直被期望用于接近精确的无创血糖测量,但受限于用于训练个人模型的有限数据以及不可避免的异常预测。为了克服这些长期存在的问题,我们通过创新的演绎学习(DL),而非传统的归纳学习(IL)方法,在有限的个人数据中大大提高了训练效率。我们演绎方法(DL)的领域理论利用累积的配对输入比较来纠正之前测量的血糖,从而构建了我们的深度神经网络结构。DL方法涉及将配对相邻轮次的指尖脉动光电容积图信号记录作为输入,应用于基于卷积神经网络(CNN)的深度学习模
本文探讨了使用演绎学习(DL)方法来训练个性化模型,以提高无创血糖测量的精确性。与传统的归纳学习(IL)相比,DL在有限数据下表现出更高的训练效率和泛化能力。实验表明,使用十几轮数据训练的DL模型在Clarke错误网格(CEG)A区域达到了80%的预测准确率,显著优于IL方法。此外,DL模型结合自动筛选算法实现了高相关系数和准确率,为无创血糖测量提供了新方案。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



