《通过十几轮数据进行模型训练,实现精确的无创血糖测量的演绎学习》阅读笔记

30 篇文章 2 订阅 ¥299.90 ¥399.90
本文探讨了使用演绎学习(DL)方法来训练个性化模型,以提高无创血糖测量的精确性。与传统的归纳学习(IL)相比,DL在有限数据下表现出更高的训练效率和泛化能力。实验表明,使用十几轮数据训练的DL模型在Clarke错误网格(CEG)A区域达到了80%的预测准确率,显著优于IL方法。此外,DL模型结合自动筛选算法实现了高相关系数和准确率,为无创血糖测量提供了新方案。
摘要由CSDN通过智能技术生成

目录

0 演绎学习

1 论文摘要

2 论文十问

3 论文亮点与不足之处

4 与其他研究的比较

5 实际应用与影响

6 个人思考与启示

参考文献


0 演绎学习

在本文中,DL指的是Deduction Learning,即演绎学习方法。该方法是一种机器学习方法,通过使用逻辑推理和归纳推理来构建模型。与传统的归纳学习方法不同,演绎学习方法可以利用领域知识和先验信息来提高模型的训练效率和泛化能力。在本文中,作者使用演绎学习方法来训练个性化模型,以实现精确无创血糖测量的目标。

1 论文摘要

个性化建模长期以来一直被期望用于接近精确的无创血糖测量,但受限于用于训练个人模型的有限数据以及不可避免的异常预测。为了克服这些长期存在的问题,我们通过创新的演绎学习(DL),而非传统的归纳学习(IL)方法,在有限的个人数据中大大提高了训练效率。我们演绎方法(DL)的领域理论利用累积的配对输入比较来纠正之前测量的血糖,从而构建了我们的深度神经网络结构。DL方法涉及将配对相邻轮次的指尖脉动光电容积图信号记录作为输入,应用于基于卷积神经网络(CNN)的深度学习模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值