目录
Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
Q8:论文中的实验及结果有没有很好地支持需要验证的科学假设?
一、论文摘要
脉搏波形轮廓(PWC)的标注过程昂贵且耗时,从而阻碍了大规模数据集的形成以满足深度学习的需求。为了在少样本PWC的条件下获得更好的结果,我们提出了一种小参数单元结构和多尺度特征提取模型。在小参数单元结构中,通过状态变量传递相邻单元的信息。同时,使用遗忘门更新信息并以单元序列的形式保留PWC的长期依赖性。多尺度特征提取模型是一个包含三个部分的集成模型。卷积神经网络用于提取单周期PWC的空间特征和多周期PWC的节律特征。递归神经网络用于保留PWC的长期依赖特征。最后,通过提取的特征,推理层用于分类。在光电容积描记法数据集和连续无创血压数据集上进行心血管疾病的分类实验。结果显示,多尺度特征提取模型在两个数据集上的分类准确率分别可达80%和96%。
本文介绍了针对脉搏波形轮廓(PWC)分类的挑战,提出了一种小参数单元结构结合多尺度特征提取的深度学习模型。在少样本条件下,该模型在心血管疾病分类中取得了80%和96%的高准确率。文章探讨了模型设计、实验方法和与其他研究的比较,强调了其在医疗领域的潜在应用。
订阅专栏 解锁全文
609

被折叠的 条评论
为什么被折叠?



