目录
Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
一、论文摘要
心房颤动(AF)是一种与增加的病残和死亡率相关的心律失常。它是心源性栓塞性卒中的主要风险因素,其早期检测对一级和二级卒中预防至关重要。如今,消费级可穿戴设备使得心律的持续监测成为可能,从而实现了变革性的诊断和患者管理工具。这种监测是通过使用低成本、易于实施的光学传感器来实现的,如今大多数可穿戴设备都配备了这种传感器。这些传感器记录血容量变化,这种技术被称为光谱测量(PPG),从中可以提取心率和其他生理参数,以了解用户的活动、健康状况、睡眠和健康状况。近年来,一些新型可穿戴设备被认为具有心房颤动检测能力,部分设备的有效性已通过大型前瞻性试验证实。这些设备将有助于心房颤动的早期筛查和治疗,从而预防中风。本综述总结了使用光谱测量进行心房颤动检测的研究成果。本文详细介绍了这些研究中使用的信号处理、机器学习和深度学习方法,然后讨论了它们在临床应用方面的局限性和挑战。
这篇阅读笔记探讨了利用光学传感器进行心房颤动(AF)检测的研究,重点关注了使用光谱测量(PPG)技术的可穿戴设备。文章指出,这些设备通过深度学习和机器学习方法,能够在无须人工标注数据的情况下有效识别AF。尽管存在局限性和挑战,但这种方法对于早期筛查和预防心源性卒中具有重要意义。
订阅专栏 解锁全文
654

被折叠的 条评论
为什么被折叠?



