目录
代码
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as signal
from PyEMD import EMD, Visualisation
# 读取数据
f = open(('Data_Saved.txt'))
content = f.read()
result = content.split() # 字符串分割
# 把十六进制列表转为十进制
new_numbers = []
for n in result:
new_numbers.append(int(n,16)) # append()末尾添加元素,int(n,16),转化为10进制
new_numbers = new_numbers[0:10*200*19] # 取10秒的脉搏数据
a_numbers = np.array(new_numbers)
b_numbers = a_numbers.reshape(-1,19)
Data = b_numbers[:,7] *256 + b_numbers[:,6] - 6*256
t1 = []
for i in range(len(Data)):
t1.append(i/200) # 脉搏采集频率为200Hz
# 绘制原始信号
plt.figure(1)
p
该博客介绍了一种利用Python实现的自动动脉硬化检测算法,通过读取脉搏信号数据,进行低通滤波、经验模态分解(EMD),并计算R值来评估动脉硬化。代码包括数据读取、信号处理、EMD分解以及结果可视化。参考了Zhang等人的研究,并提供了项目链接。
订阅专栏 解锁全文
1740

被折叠的 条评论
为什么被折叠?



