基于卷积神经网络和心电信号的情绪识别项目记录

18 篇文章 ¥299.90 ¥399.90
该博客记录了一项使用卷积神经网络(CNN)进行心电信号情绪识别的项目。通过预处理数据集和设计CNN模型,实验在二分类任务中达到80%以上准确率,但四分类任务表现有待提升。作者提出增加数据量、采用更复杂模型和优化超参数作为改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、引言

二、数据集和预处理

三、模型设计与训练

四、实验结果

五、讨论与改进方向

六、结论


一、引言

情绪识别是一项复杂的任务,尤其是基于生理信号的情绪识别。我们选择了心电信号作为输入,使用卷积神经网络(CNN)进行情绪分类。我们的目标是实现高准确率的情绪分类,以帮助识别个体的情绪状态,从而为情感健康领域的研究和应用提供支持。

二、数据集和预处理

我们使用的数据集包括来自不同情绪状态下的心电信号。数据集经过预处理,和特征提取等步骤,以便于CNN模型的训练和评估。

使用下面链接的数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力の小熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值