Transformer模型自提出以来,已经成为深度学习领域,尤其是自然语言处理(NLP)中的一种革命性模型。与传统的循环神经网络(RNN)和长短期记忆网络(LSTM)不同,Transformer完全依赖于注意力机制来捕捉序列中的依赖关系。这使得它能够更高效地处理长序列数据。在本文中,我们将详细介绍Transformer模型的基本原理,并使用Python和TensorFlow/Keras实现一个简单的Transformer模型。
1. Transformer模型简介
Transformer模型由编码器(Encoder)和解码器(Decoder)组成,每个编码器和解码器层都由多头自注意力机制和前馈神经网络(Feed-Forward Neural Network)组成。
1.1 编码器(Encoder)
编码器的主要组件包括:
- 自注意力层(Self-Attention Layer):计算序列中每个位置对其他位置的注意力分数。
- 前馈神经网络(Feed-Forward Neural Network):对每个位置的表示进行独立的非线性变换。

订阅专栏 解锁全文
1103

被折叠的 条评论
为什么被折叠?



