百度飞浆入门学习
文章平均质量分 68
努力学习,努力分享中
川川菜鸟
我是一位擅长数据科学、人工智能、网站搭建、网络爬虫和软件/接口测试的专家,同时也是畅销书《Python网络爬虫入门到实战》和《Python3编程从零基础到实战》 作者。
展开
-
手把手教你opencv做人脸识别(附源码+文档)
文章目录一、环境二、使用Haar级联进行人脸检测三、Haar级联结合摄像头四、使用SSD的人脸检测五、 SSD结合摄像头人脸检测六、结语一、环境pip install opencv-pythonpython3.9pycharm2020人狠话不多,直接上代码,注释在代码里面,不说废话。二、使用Haar级联进行人脸检测测试案例:代码:(记得自己到下载地址下载对应的xml)# coding=gbk"""作者:川川@时间 : 2021/9/5 16:38https://github.原创 2021-09-05 18:06:47 · 68759 阅读 · 204 评论 -
【深度学习案例】批量检测戴口罩
一、定义待预测数据# 待预测图片test_img_path = ["./img.png"]import matplotlib.pyplot as pltimport matplotlib.image as mpimgimg = mpimg.imread(test_img_path[0])# 展示待预测图片plt.figure(figsize=(10,10))plt.imshow(img)plt.axis('off')plt.show()返回:若是待预测图片存放在一个文件中,原创 2021-08-30 01:07:38 · 2571 阅读 · 3 评论 -
【深度学习入门案例】动物种类识别
一、定义待预测数据数据集:代码:# 待预测图片test_img_path = ['./img/img.png', './img/img_1.png','./img/img_2.png','./img/img_3.png','./img/img_4.png']import matplotlib.pyplot as pltimport matplotlib.image as mpimg# 展示其中大狮子图片img1 = mpimg.imread(test_img_path[0])plt原创 2021-08-30 00:05:36 · 3374 阅读 · 2 评论 -
【深度学习入门案例】三十行代码实现抠图及图片合成
文章目录一义待抠图 图片二载预训练模型三.片合成一义待抠图 图片图片和py文件统计目录:代码为:#待预测图片test_img_path = ["./test.jpg"]import matplotlib.pyplot as pltimport matplotlib.image as mpimgimg = mpimg.imread(test_img_path[0])# 展示待预测图片plt.figure(figsize=(10,10))plt.imshow(img)plt.a原创 2021-08-29 23:32:41 · 1448 阅读 · 1 评论 -
【深度学习入门案例】二十行代码实现批量人脸检测
文章目录一.前言二.定义数据三.加载预训练模型四、预测五.完整源码一.前言利用Ultra-Light-Fast-Generic-Face-Detector-1MB模型完成人脸检测。该模型是针对边缘计算设备或低算力设备(如用ARM推理)设计的实时超轻量级通用人脸检测模型,可以在低算力设备中如用ARM进行实时的通用场景的人脸检测推理。二.定义数据# 待预测图片test_img_path = ["./test.jpg"]import matplotlib.pyplot as plt import原创 2021-08-29 22:46:14 · 1175 阅读 · 0 评论 -
【深度学习入门案例】LAC词法分析
文章目录一、准备数据二、读取数据三、加载预训练模型四、预测一、准备数据创建ci.txt文档:二、读取数据#读取数据with open("ci.txt", 'r') as f: test_text = [] for line in f: test_text.append(line.strip())print(test_text)返回:三、加载预训练模型LAC网络框架为BiGRU+CRF,整体框架图:代码为:import paddlehub as h原创 2021-08-29 22:25:40 · 944 阅读 · 0 评论 -
【深度学习入门案例】Senta情感分析
前言情感倾向分析(Sentiment Classification,简称Senta)针对带有主观描述的中文文本,可自动判断该文本的情感极性类别并给出相应的置信度,能够帮助企业理解用户消费习惯、分析热点话题和危机舆情监控,为企业提供有利的决策支持。数据准备创建test.text文档数据读取'''用户想要利用Senta完成对该文件的情感分析预测,只需读入该文件,将文件内容存成list,list中每个元素是待预测句子。'''with open("test.txt", 'r') as f:原创 2021-08-29 22:02:25 · 4037 阅读 · 1 评论 -
【深度学习入门案例】波士顿房价预测
人工智能,机器学习,深度学习参考文献:做个简单介绍:三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。深度学习设计框架:环境查看import paddleimport numpy as npimport osimport matplotlibimport matplotlib.pyplot as pltimport pandas as pdimport seaborn as snsimport warningswarnings.filterwarn原创 2021-08-29 15:59:32 · 4116 阅读 · 10 评论 -
【飞桨PaddleHub】所有命令行使用方法
文章目录hup命令大全1.将Module安装到本地2.卸载本地Module3.信息查看4.下载PaddleHub提供的Module5.关键词搜索6.列出本地已经安装的Module7.执行Module的预测8.NLP类的任务9.CV类的任务10.显示帮助信息11.清理缓存12.配置查看13.一键部署Module预测服hup命令大全1.将Module安装到本地hub install2.卸载本地Modulehub uninstall举个例子:hub uninstall senta_bilstm原创 2021-08-29 06:21:00 · 2726 阅读 · 0 评论 -
【飞桨PaddlePaddle】迁移学习快速入门,完整源码+讲解演示
一.安装环境依赖安装gpu版本的PaddlePaddlepip install paddlepaddle-gpu -U或者安装cpu版本的paddlepaddle pip install paddlepaddle -U框架安装pip install paddlehub1测试可以使用server_check()可以检查本地与远端PaddleHub-Server的连接状态,使用方法如下:import paddlehubpaddlehub.server_check()# 如果可以连接原创 2021-08-29 05:47:50 · 2101 阅读 · 3 评论