tensorflow框架转换成pytorch框架

如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)

关于tensorflow代码转pytorch需要注意的一些地方:
(1)输入的数据不同,比如特征,tensorflow是(1,2708,1433),pytorch的是(1,1433,2708)。
(2)标签的编码方式不同,tensorflow是onehot编码,比如[[0,0,1],[1,0,0],[0,1,0]],pytorch就是原始的类[2,0,1]。
(3)构建模型的方式不同,tensorflow直接使用,pytorch要继承nn.Module,然后在__init__建立层,在forward中进行计算。
(4)训练验证测试的不同,tensorflow要先构建计算图,然后在Session中执行计算,也就是静态图,pytorch是动态图,没有显示的定义计算图。
(5)相关的接口也不同,这是自然而然的,毕竟都有着自己的设计理念,比如tf.concat()对应torch.cat(),即使名字相同的两个类,使用的方法也可能是不同的。

pytorch和tensorflow的爱恨情仇之张量

与pytorch旧版本类似的是,tf.constant()对应torch.Tensor(),tf.Variable()对应Variable()

部分tensorflow内置函数与pytorch内置函数的对应 — 持续更新

TensorFlow - tf.concat 函数 & Pytorch - torch.cat 函数
tf.concat( values, axis, name = ‘concat’,axis=0 )
torch.cat((A,B),0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>