审题
源题目
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1 到 n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式:
输入共 n + 2 行。
第一行,一个整数 n,表示总共有 n 张地毯。
接下来的 n 行中,第 i+1 行表示编号 ii 的地毯的信息,包含四个整数 a ,b ,g ,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a, b)以及地毯在 x 轴和 y 轴方向的长度。
第 n + 2行包含两个整数 x 和 y,表示所求的地面的点的坐标 (x, y)。
对于 30% 的数据,有 n≤2。
对于 50% 的数据,有 0≤a,b,g,k≤100。
对于 100% 的数据,有 0 ≤ n <=10000、
0<= a,b,g,k <= 100000
正文
那么由题目可知,地毯是可以覆盖的。
所以我们要创建一个倒序循环。(因为倒序是从最上面遍历到最下面)
因为地毯是按照编号放置的,所以我们要从n遍历到1。(包含一)(n :n 张地毯)
这样就有了源码:
for(int d=n;d>=i;d--){
//TODO:判断坐标是否在地毯里面
}
由小学二年级的知识,我们可以看到:
坐标点(x,y)如果包含在编号为d的地毯里,它的x肯定>=地毯的x,y也是一样、
它的x肯定<=地毯的x加上地毯的在 x 轴方向的长度,y也同理。
Code
创建主体
#include<iostream>
using namespace std;
int a[10001],b[10001],g[10001],k[10001],n,x,y;
int main(){
//TODO:输入
return 0;
}
创建输入
#include<iostream>
using namespace std;
int a[10001],b[10001],g[10001],k[10001],n,x,y;
int main(){
cin>>n;
for(int d=1;d<=n;d++){
cin>>a[d]>>b[d]>>g[d]>>k[d];
}
//TODO:算法
return 0;
}
创建算法
#include<iostream>
using namespace std;
int a[10001],b[10001],g[10001],k[10001],n,x,y;
int main(){
cin>>n;
for(int d=1;d<=n;d++){
cin>>a[d]>>b[d]>>g[d]>>k[d];
}
for(int d=n;d>=n;d--){
if(x>=a[d] && y>=b[d] && x<=a[d]+g[d] && y<=b[d]+k[d]){
cout<<d;
return 0;
}
}
cout<<-1;
return 0;
}
竞赛化
#include<iostream>
using namespace std;
int a[10001],b[10001],g[10001],k[10001],n,x,y;
int main(){
cin>>n;
for(register int d(1);d<=n;++d){
cin>>a[d]>>b[d]>>g[d]>>k[d];
}
for(register int d(n);d>=n;--d){
if(x>=a[d] && y>=b[d] && x<=a[d]+g[d] && y<=b[d]+k[d]){
cout<<d;
return 0;
}
}
cout<<-1;
return 0;
}
The End