主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。
由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类
聚类
1 聚类任务
在“无监督学习”(unsupervised
本文介绍了聚类的基本概念,包括聚类任务和性能度量,如外部指标(Jaccard系数、FM指数、Rand指数)和内部指标(DBI、DI)。重点探讨了距离度量,如闵可夫斯基距离(曼哈顿、欧氏、切比雪夫)和非度量距离,并讨论了无量纲化在消除量纲影响中的作用,包括标准化和归一化的方法。
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。
由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类
在“无监督学习”(unsupervised
555

被折叠的 条评论
为什么被折叠?
