【机器学习】聚类【Ⅱ】原型聚类经典算法

本文深入探讨了原型聚类算法,包括k均值、k-modes、k-prototype、k-medoids和学习向量量化(LVQ)。介绍了这些算法的基本思想、优缺点及应用场景,并通过实例展示了算法的工作原理。k均值算法以其简单快速的特点被广泛应用,但对初始值敏感且不适用于非凸形状簇。k-modes和k-prototype分别扩展了k均值以处理类别型和混合属性数据。k-medoids算法通过选择样本作为原型,对离群点更鲁棒。LVQ作为监督学习算法,利用样本类别信息进行聚类。
摘要由CSDN通过智能技术生成

主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。

由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类

4 原型聚类

原型聚类亦称“基于原型的聚类”(prototype-based clustering)&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值