主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。
由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类
4 原型聚类
原型聚类亦称“基于原型的聚类”(prototype-based clustering)&#
本文深入探讨了原型聚类算法,包括k均值、k-modes、k-prototype、k-medoids和学习向量量化(LVQ)。介绍了这些算法的基本思想、优缺点及应用场景,并通过实例展示了算法的工作原理。k均值算法以其简单快速的特点被广泛应用,但对初始值敏感且不适用于非凸形状簇。k-modes和k-prototype分别扩展了k均值以处理类别型和混合属性数据。k-medoids算法通过选择样本作为原型,对离群点更鲁棒。LVQ作为监督学习算法,利用样本类别信息进行聚类。
订阅专栏 解锁全文

1万+

被折叠的 条评论
为什么被折叠?



