【机器学习】聚类【Ⅴ】密度聚类与层次聚类

本文深入探讨了机器学习中的两种聚类算法:密度聚类(以DBSCAN为例)和层次聚类(以AGNES算法为例)。密度聚类基于样本密度,DBSCAN通过核心对象和密度可达关系识别聚类;层次聚类采用自底向上的策略,通过聚类簇之间的距离合并。文章详细解释了这两种算法的工作原理、关键概念以及应用场景,并提供了实例分析。
摘要由CSDN通过智能技术生成

主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。

由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类

5 密度聚类

密度聚类亦称“基于密度的聚类”(density-based clustering)&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值