主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。
由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类
5 密度聚类
密度聚类亦称“基于密度的聚类”(density-based clustering)&#x
本文深入探讨了机器学习中的两种聚类算法:密度聚类(以DBSCAN为例)和层次聚类(以AGNES算法为例)。密度聚类基于样本密度,DBSCAN通过核心对象和密度可达关系识别聚类;层次聚类采用自底向上的策略,通过聚类簇之间的距离合并。文章详细解释了这两种算法的工作原理、关键概念以及应用场景,并提供了实例分析。
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。
有任何的书写错误、排版错误、概念错误等,希望大家包含指正。
由于字数限制,分成五篇博客。
【机器学习】聚类【Ⅰ】基础知识与距离度量
【机器学习】聚类【Ⅱ】原型聚类经典算法
【机器学习】聚类【Ⅲ】高斯混合模型讲解
【机器学习】聚类【Ⅳ】高斯混合模型数学推导
【机器学习】聚类【Ⅴ】密度聚类与层次聚类
密度聚类亦称“基于密度的聚类”(density-based clustering)&#x
3059
744
4768
381
1万+

被折叠的 条评论
为什么被折叠?
