retinaface
文章平均质量分 50
落了一地秋
这个作者很懒,什么都没留下…
展开
-
retinaface代码学习笔记
num_workers?Python- argparse.ArgumentParser()用法解析Python- argparse.ArgumentParser()用法解析代码折叠图像预处理之减去RGB均值 rgb_mean = (104, 117, 123)图像预处理之减去RGB均值_utils.IntermediateLayerGetter 取出网络中间层输出cudnn.benchmark = Truecudnn.benchmark = TruePytorch中net.ev原创 2021-06-17 20:34:22 · 801 阅读 · 2 评论 -
Retinaface代码解读------先验框如何生成utils.anchors.py
Retinaface代码解读------先验框如何生成utils.anchors.py加以注解代码如下加以注解代码如下最后有散点效果图,可任意看看效果from itertools import product as productfrom math import ceilimport numpy as npimport torchclass Anchors(object): def __init__(self, cfg, image_size=None, phase='trai原创 2021-05-18 10:02:55 · 573 阅读 · 0 评论 -
MobileNet v1深度可分离卷积理解----粗略版笔记
深度可分离卷积理解标准卷积的参数量和计算量这里的12改成8举的例子是:一张图片,与256个卷积核做运算,卷积核的尺寸是 Dk×Dk×M ,一共有 N 个,每一个都要进行 Dw×Dh 次运算深度可分离卷积的参数量计算量这里同样最后的 12 改为 8深度卷积的卷积核尺寸 Dk×Dk×M ;逐点卷积的卷积核尺寸为 1×1×M ,一共有 N 个理解:深度可分离卷积 简单来说就是1.深度卷积做卷积运算的时候没有求和运算,换个理解就是说把 DkXDkXM 拆成 M 个 DkXDkX1 的卷积原创 2021-05-07 10:30:34 · 219 阅读 · 0 评论
分享