落了一地秋
码龄5年
关注
提问 私信
  • 博客:158,915
    社区:7
    动态:14
    158,936
    总访问量
  • 101
    原创
  • 151,493
    排名
  • 113
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-01-30
博客简介:

落了一地秋的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    472
    当月
    4
个人成就
  • 获得194次点赞
  • 内容获得106次评论
  • 获得916次收藏
  • 代码片获得1,015次分享
创作历程
  • 5篇
    2024年
  • 5篇
    2022年
  • 89篇
    2021年
  • 3篇
    2020年
成就勋章
TA的专栏
  • 我的笔记
    1篇
  • mysql
    1篇
  • python代码
    3篇
  • 知识蒸馏
    14篇
  • Linux
    10篇
  • OVD
    4篇
  • 网络
    8篇
  • anchor
    1篇
  • 论文笔记
    4篇
  • ATTENTION
    2篇
  • 深度学习
    5篇
  • ubuntu
    2篇
  • 无监督
    5篇
  • cuda
    2篇
  • retinaface
    3篇
  • 网络模型 net model笔记
    1篇
  • ryu
    4篇
  • ODL
    9篇
  • SDN笔记
    8篇
  • py(部分未公开)
    2篇
  • 笔记本电脑和虚拟机记录
    2篇
  • mininet
    6篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

WPS删除空白页

WPS删除空白页打开 显示/隐藏 段落标记选中回车标记——右键——字体——隐藏文字关闭 显示/隐藏 段落标记
原创
发布博客 2024.05.06 ·
189 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

MAC安装MySQL

SQL,Structured Query Language,用于访问数据库的标准化语言。
原创
发布博客 2024.03.24 ·
503 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“的解决办法

【代码】Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“的解决办法。
原创
发布博客 2024.03.23 ·
2451 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Pycharm小妙招之Anaconda离线配环境

【代码】Pycharm小妙招之Anaconda离线配环境。
原创
发布博客 2024.03.23 ·
688 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

万用表数据导出变化曲线图——pycharm实现视频数据导出变化曲线图

万用表数据导出变化曲线图——pycharm实现视频数据导出变化曲线图
原创
发布博客 2024.03.09 ·
644 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

Towards Open Vocabulary Object Detection without Human-provided Bounding Boxes(2021CVPR)----论文阅读笔记

Towards Open Vocabulary Object Detection without Human-provided Bounding Boxes----论文阅读笔记Abstract1. Introduction如何实现? pseudo bounding box label如何生成的?2. Related Work3. Related Work3.1. Generating Pseudo Box Labels3.2. Open vocabulary Object Detection with Ps
原创
发布博客 2022.01.08 ·
2221 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

什么是word embedding?

https://easyai.tech/ai-definition/word-embedding/#representation
原创
发布博客 2022.01.06 ·
494 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

什么是RPN,ROIAlign?

RPNRPNRPNRPN(Region Proposal Network)用来产生Regin Proposal(前景框,候选区域,检测框(Faster RCNN 直接拿来做检测框)
原创
发布博客 2022.01.06 ·
2499 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Open-Vocabulary Object Detection Using Captions(2021 CVPR)----论文解读

Open-Vocabulary Object Detection Using Captions[2021CVPR]----论文解读papercode1. AbstractOpen-Vocabulary Object Detection Using Captions2. Introduction设想与构思思路与做法OVD、ZSD、 WSD的区别?3. Related WorkZSDWSDObject detection using mixed supervisionVisual grounding of re
原创
发布博客 2022.01.05 ·
3717 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

teamviewer 远程配置

原创
发布博客 2022.01.05 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

IoU-aware Single-stage Object Detector for Accurate Localization-----论文阅读笔记

IoU-aware Single-stage Object Detector for Accurate Localization-----论文阅读笔记原文和代码:Abstract存在的问题?解决办法Introduction总结:问题:作者解决方案:2. Related Work3. Method3.1. IoU-aware single-stage object detector3.2. Training3.3. Inference未写实验可以从参考原文原文和代码:原文代码Abstract存在的问
原创
发布博客 2021.09.27 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Variational Information Distillation----论文阅读笔记

Variational Information Distillation主要贡献:VIDAlgorithm formulation代码(重点在这,方便理解)提出了一个最大化师生网络互信息作为知识转移的信息论框架。主要贡献:我们提出了变分信息提取,这是一种基于变分信息最大化技术,通过最大化两个网络之间的互信息实现的原则性知识转移框架。我们证明了VID概括了几种现有的知识转移方法。此外,在各种知识转移实验中,我们的框架实现在经验上优于最先进的知识转移方法,包括相同数据集或不同数据集上(异构)DNN之间
原创
发布博客 2021.09.15 ·
634 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Similarity-Preserving Knowledge Distillation(2019ICCV)----论文阅读笔记

Similarity-Preserving Knowledge DistillationAbstract1. IntroductionAbstract在训练网络的过程中,语义相似的输入倾向于在引发相似的激活模式。保持相似性的知识提取指导学生网络的训练,使在教师网络中产生相似(不同)激活的输入指导学生网络中产生相似(不同)激活。与以前的提取方法不同,学生不需要模仿教师的表示空间,而是要在自己的表示空间中保留成对的相似性。1. Introduction...
原创
发布博客 2021.09.15 ·
1579 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Probabilistic Knowledge Transfer for Deep Representation Learning(2018)----论文笔记

Probabilistic Knowledge Transfer for Deep Representation LearningAbstract1. Introduction后续存在问题:本文提出的方法:优点:贡献2 Related Work3 Probabilistic Knowledge Transfer4 Experimental EvaluationAbstract1.蒸馏的知识:学习表示和label的互信息量 (mutual information between learned repre
原创
发布博客 2021.09.13 ·
1197 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

奇异值分解(SVD)

奇异值分解(SVD)
原创
发布博客 2021.09.11 ·
145 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Self-supervised Knowledge Distillation using Singular Value Decomposition(2018ECCV)----阅读笔记

Self-supervised Knowledge Distillation using Singular Value Decomposition----阅读笔记AbstractIntroduction2 Related Works2.1 Knowledge Distillation2.2 SVD and RBF2.3 Training Mechanism3 Method3.1 Proposed Distillation ModuleTruncated SVDAbstract提出了一种新的
原创
发布博客 2021.09.11 ·
780 阅读 ·
1 点赞 ·
3 评论 ·
9 收藏

Like What Y ou Like: Knowledge Distill via Neuron Selectivity Transfer(2017)------论文阅读笔记

Like What Y ou Like: Knowledge Distill via Neuron Selectivity Transfer------论文阅读笔记写在前面Abstract1. Introduction2. Related Works3. Background3.1. Notations3.2. Maximum Mean Discrepancy (最大平均偏差MMD)可视化结果4. Neuron Selectivity Transfer4.1. MotivationWhat is wrong
原创
发布博客 2021.09.10 ·
594 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

A Gift from Knowledge Distillation(2017 CVPR)----论文笔记

A Gift from Knowledge Distillation:Fast Optimization, Network Minimization and Transfer Learning(2017 CVPR)Abstract1. Introduction贡献2. Related Work3. Method3.1. Proposed Distilled Knowledge3.2. Mathematical Expression of the Distilled Knowledge3.3. Loss f
原创
发布博客 2021.09.08 ·
578 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Correlation Congruence for Knowledge Distillation (2019 ICCV)----阅读笔记

Correlation Congruence for Knowledge DistillationAbstractIntrodution2.Related Work3.CCKD3.1 3.1. Background and Notations3.2. Knowledge Distillation3.3. Correlation Congruence3.4. Generalized kernel-based correlation3.5. Strategy for Mini-batch Sampler具体采样
原创
发布博客 2021.09.08 ·
736 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

正负样本不平衡---->Focal Loss(笔记)

添加链接描述添加链接描述简单来说,正样本 就是对于gt center point 所落在 的 grid 网格 所生成的 anchors 中与 gt 计算出最大的IOU的 anchor。负样本就是预测框 与所有的 gt 计算得到的最大IOU,如果 < ignore_thres ,就是负样本。上方图片表诉中括号的意为:一个anchor可能既是正样本又是负样本。Focal Loss 其实很简单来说就是平衡了,正负样本不平衡,难分类样本,易分类样本的不平衡。...
原创
发布博客 2021.09.07 ·
525 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多