DP动态规划入门-01背包问题

题目描述

一个背包的容量为M,现在有N件物品,每件物品的重量为W1,W2…,每件物品的价值为V1,V2…,每种物品只有一件,如何装物品进入背包(不超过容量)使总价值最大。(M<=200,N<=30)
输入格式:第一行输入两个数字,容量(M)与物品件数(N)
第二行到第N+1行开始为每一个物品的重量(Wi)与价值(Vi)
输出:能达到的最大总价值

解析

之所以叫01背包是因为每件物品只有一件,可以取(1)或者不取(0)。

动态规划是要把原问题分解为子问题,并且子问题之间存在有递推关系

针对这道具体的题目,M容量,N件物品怎么装是无法直接知道的,但我们可以简化一下,一件一件物品的放进去。
第一件物品放入,容量为1,2,…,M的情况下能达到的最大总价值
第二件物品放入,容量为1,2,…,M的情况下能达到的最大总价值

第N件物品放入,容量为1,2,…,M的情况下能达到的最大总价值

可以用一个数组dp[i][j]存储表示子问题,元素的前一个下标i表示物品件数,后一个下标j表示总容量,元素的值表示这个子问题的最优解——总价值。

关键是要找到递推关系,本题递归关系为:

if(j-w[i] >= 0)	dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]] + v[i]);
			else dp[i][j] = dp[i-1][j];

解释:这个递推关系来源于考虑第i件物品装不装的问题,j为总容量,j-w[i]>=0表示装的下(不能是大于,等于表示刚好装下),装不下则i件物品j容量问题与前i-1件物品j容量问题最优解相同。
装的下时则需要比较两种情况,一种不装第i件物品的总价值(dp[i-1][j]),另一种装下后总容量变为j-w[i],变成前i-1件物品,总容量j-w[i]这个子问题的最优解(dp[i-1][j-w[i]])加上这件物品的价值(v[i]),取更大的一个。

完整代码

#include<iostream>
#include<algorithm>
int main()
{
	using std::cin;
	using std::cout;
	using std::max;
	int M,N,i,j;
	int w[31];
	int v[31];
	//输入 
	cin >> M >> N;//M为容量 N为个数
	for(i = 1; i <= N; i++)
		cin >> w[i] >> v[i];
	//进行状态存储并递推 
	int dp[31][201] = {0};//dp[i][j]表示i件物品j容量 
	for(i = 1; i < N+1; i++)
		for(j = 1; j < M+1 ;j++){
			if(j-w[i] >= 0)	dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]] + v[i]);
			else dp[i][j] = dp[i-1][j];
		}
	cout << dp[N][M];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值