IEEE 机器人最优控制开源库 Model-based Optimization for Robotics

本文介绍了机器人最优控制领域的开源库和工具箱,如ACADO、CasADi、Control Toolbox等,这些工具支持动态模型优化、轨迹规划和模型预测控制,对于机器人轨迹生成和行为优化至关重要,尤其在仿人机器人和自动驾驶中。
摘要由CSDN通过智能技术生成

系列文章目录


文章目录

  • 系列文章目录
  • 前言
  • 一、开源的库和工具箱
    • 1.1 ACADO
    • 1.2 CasADi
    • 1.3 Control Toolbox
    • 1.4 Crocoddyl
    • 1.5 Ipopt
    • 1.6 Manopt
    • 1.7 LexLS
    • 1.8 NLOpt
    • 1.9 qpOASES
    • 1.10 qpSWIFT
    • 1.11 Roboptim
  • 二、其他库和工具箱
    • 2.1 MUSCOD
    • 2.2 OCPID-DAE1
    • 2.3 SNOPT


前言

机器人,尤其是仿人机器人,是一个极其复杂的动态系统,其行为的生成(generation of behaviors)并非易事,因为一个行为需要调整的参数数量非常多。但是,当今机器人面临的挑战要求它们自动生成和控制各种行为,以便更加灵活地适应不断变化的环境。优化(Optimization)或最优控制(optimal control)为基于基本原理(成本函数(cost functions)、约束条件(constraints))自动生成行为提供了一种有趣的方法。摩尔定律以及优化算法,特别是实时优化算法的最新发展,使得算法优化的更广泛应用成为现实,甚至在不久的将来,复杂机器人应用中的实时控制(real-time control)也将成为现实。

在这里插入图片描述

基于模型的机器人优化(Model-based optimization for Robotics)技术专题组推动的重要研究领域包括

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值