系列文章目录
文章目录
- 系列文章目录
- 前言
- 一、开源的库和工具箱
-
- 1.1 ACADO
- 1.2 CasADi
- 1.3 Control Toolbox
- 1.4 Crocoddyl
- 1.5 Ipopt
- 1.6 Manopt
- 1.7 LexLS
- 1.8 NLOpt
- 1.9 qpOASES
- 1.10 qpSWIFT
- 1.11 Roboptim
- 二、其他库和工具箱
-
- 2.1 MUSCOD
- 2.2 OCPID-DAE1
- 2.3 SNOPT
前言
机器人,尤其是仿人机器人,是一个极其复杂的动态系统,其行为的生成(generation of behaviors)并非易事,因为一个行为需要调整的参数数量非常多。但是,当今机器人面临的挑战要求它们自动生成和控制各种行为,以便更加灵活地适应不断变化的环境。优化(Optimization)或最优控制(optimal control)为基于基本原理(成本函数(cost functions)、约束条件(constraints))自动生成行为提供了一种有趣的方法。摩尔定律以及优化算法,特别是实时优化算法的最新发展,使得算法优化的更广泛应用成为现实,甚至在不久的将来,复杂机器人应用中的实时控制(real-time control)也将成为现实。

基于模型的机器人优化(Model-based optimization for Robotics)技术专题组推动的重要研究领域包括
本文介绍了机器人最优控制领域的开源库和工具箱,如ACADO、CasADi、Control Toolbox等,这些工具支持动态模型优化、轨迹规划和模型预测控制,对于机器人轨迹生成和行为优化至关重要,尤其在仿人机器人和自动驾驶中。
订阅专栏 解锁全文
1030

被折叠的 条评论
为什么被折叠?



