【计算机视觉之三维重建】

第一章 摄像机几何

针孔模型&透镜

针孔摄像机:增加屏障以减少模糊
针孔摄像机模型
映射关系: P = [ x y 1 ] → P ′ = [ x ′ y ′ ] P=\begin{bmatrix} x\\y\\1 \end{bmatrix}→P'=\begin{bmatrix} x'\\y' \end{bmatrix} P= xy1 P=[xy] { x ′ = f x z y ′ = f y z \left\{\begin{matrix}x'=f {x \over z} \\y'=f{y\over z} \end{matrix}\right. {x=fzxy=fzy
缩小光圈:成像变清晰,变暗
透镜将多条光线聚焦到胶片上:所有平行于光轴的光线汇聚到焦点,穿过中心的光线方向不变
加镜头不影响小孔成像模型
加镜头后不影响小孔成像模型,但会导致失焦、成像有景深,同时会产生径向畸变。径向畸变是由于光线在远离透镜中心的地方比靠近中心的地方更加弯曲造成的,表现为图像像素点以畸变中心为中心点,沿着径向产生的位置偏差,导致成像发生形变。径向畸变可以分为枕形(畸变像点相对于理想像点沿径向向外偏移,远离中心)和桶形畸变像点相对于理想像点沿径向向中心靠拢)
枕形和桶形畸变

摄像机几何

  • 像平面(单位:m)到像素平面(单位:像素)
    在这里插入图片描述
    1、偏置: ( x , y , z ) → ( f x z + c x , f y z + c y ) (x,y,z)\rightarrow (f{x\over z}+c_x, f{y\over z}+c_y) (x,y,z)(fzx+cx,fzy+cy)
    2、单位变换: ( x , y , z ) → ( f k x z + c x , f l y z + c y ) (x,y,z)\rightarrow (fk{x\over z}+c_x, fl{y\over z}+c_y) (x,y,z)(fkzx+cx,flzy+cy)单位:k,l:pixel/m f:m
    f、k、l一般相机内部参数固定:令 α = f k \alpha=fk α=fk β = f l \beta=fl β=fl
    P = ( x , y , z ) → P ′ = ( α x z + c x , β y z + c y ) P=(x,y,z)\rightarrow P'=(\alpha{x\over z}+c_x, \beta{y\over z}+c_y) P=(x,y,z)P=(αzx+cx,βzy+cy)
    注——此时由于z变化,x',y'相对于x和y不是线性变换,通过引入齐次坐标变为线性变换:
  • 齐次坐标系中的投影变换:

    欧式坐标变换为齐次坐标:
    ( x , y ) → [ x y 1 ] (图像点的齐次坐标) (x, y)\rightarrow\begin{bmatrix} x\\y\\1 \end{bmatrix}\tag{图像点的齐次坐标} (x,y) xy1 (图像点的齐次坐标)
    ( x , y , z ) → [ x y z 1 ] (空间点的齐次坐标) (x, y, z)\rightarrow\begin{bmatrix} x\\y\\z\\1 \end{bmatrix}\tag{空间点的齐次坐标} (x,y,z) xyz1 (空间点的齐次坐标)
    齐次坐标变为欧式坐标:
    [ x y w ] → ( x / w , y / w ) \begin{bmatrix} x\\y\\w \end{bmatrix}\rightarrow(x/w, y/w) xyw (x/w,y/w)
    [ x y z w ] → ( x / w , y / w , z / w ) \begin{bmatrix} x\\y\\z\\w \end{bmatrix}\rightarrow(x/w, y/w,z/w) xyzw (x/w,y/w,z/w)

    P h ′ = [ α x + c x z β x + c y z z ] = [ α 0 c x 0 0 β c y 0 0 0 1 0 ] [ x y z 1 ] ⏟ P h P_{h'}=\begin{bmatrix} \alpha x+c_xz\\\beta x+c_yz\\z \end{bmatrix}=\begin{bmatrix} \alpha &0&c_x&0\\0&\beta&c_y&0\\0&0&1&0 \end{bmatrix}\underbrace {\begin{bmatrix} x\\y\\z\\1\end{bmatrix}}_{P_h} Ph= αx+cxzβx+cyzz = α000β0cxcy1000 Ph xyz1 P h ′ ⏞ 齐次 → P ′ = ( α x z + c x , β y z + c y ) ⏞ 欧式 \overbrace{P_{h'}}^{齐次}\rightarrow\overbrace{P'=(\alpha {x\over z}+c_x,\beta {y\over z}+c_y)}^{欧式} Ph 齐次P=(αzx+cx,βzy+cy) 欧式
    后续不区分齐次坐标 P ’ = [ α 0 c x 0 0 β c y 0 0 0 1 0 ] [ x y z 1 ] = M P P’=\begin{bmatrix} \alpha &0&c_x&0\\0&\beta&c_y&0\\0&0&1&0 \end{bmatrix}\begin{bmatrix} x\\y\\z\\1\end{bmatrix}=MP P= α000β0cxcy1000 xyz1 =MP
  • 摄像机偏斜
    摄像机坐标系的点映射到像素平面
  • 投影矩阵M P’=MP=K[I 0]P
    摄像机内参矩阵K——决定了摄像机坐标系下空间点到图像点的映射:
    K = [ α − α c o t θ c x 0 β s i n θ c y 0 0 1 ] K=\begin{bmatrix} \alpha &-\alpha cot\theta &c_x\\0&{\beta \over sin \theta}&c_y\\0&0&1 \end{bmatrix} K= α00αcosinθβ0cxcy1

规范化摄像机: P ’ = [ x y z ] = [ 1 0 0 0 0 1 0 0 0 0 1 0 ] [ x y z 1 ] = M P (R4 → R3 H) P’=\begin{bmatrix} x\\y\\z\end{bmatrix}= \begin{bmatrix} 1 &0&0&0\\0&1&0&0\\0&0&1&0 \end{bmatrix}\begin{bmatrix} x\\y\\z\\1\end{bmatrix}=MP\tag{R4 → R3 H} P= xyz = 100010001000 xyz1 =MP(R4 → R3 H)
已知齐次坐标即可知道三维坐标
P‘欧式坐标(x/z.y/z)

  • 世界坐标系
    上——世界坐标系到摄像机坐标系转换:P为4×1矩阵  Pw为4×1  下——摄像机坐标系到像素坐标系转换
    K 内参矩阵 5个自由度
    [R T] 外参矩阵 6个自由度
    M 投影矩阵 11个自由度
    在这里插入图片描述
    P ′ = M P w = [ m 1 m 2 m 3 ] P w = [ m 1 P w m 2 P w m 3 P w ] → ( m 1 P w m 3 P w , m 2 P w m 3 P w ) P'=MP_w=\begin{bmatrix} m_1\\m_2\\m_3\end{bmatrix}P_w=\begin{bmatrix} m_1P_w\\m_2P_w\\m_3P_w\end{bmatrix}\rightarrow({{m_1P_w}\over{m_3P_w}},{{m_2P_w}\over{m_3P_w}}) P=MPw= m1m2m3 Pw= m1Pwm2Pwm3Pw (m3Pwm1Pw,m3Pwm2Pw)
    M = [ m 1 m 2 m 3 ] M=\begin{bmatrix} m_1\\m_2\\m_3\end{bmatrix} M= m1m2m3
    投影矩阵M的性质
    在这里插入图片描述
    投影变换的性质:点投影为点;线投影为线;近大远小;角度不再保持;平行线相交(相交于影消点)

其他摄像机模型

这部分不太关心,放着课件以后需要了看
在这里插入图片描述

弱透视投影摄像机:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
正交投影摄像机
在这里插入图片描述
在这里插入图片描述
补充知识

第二章 摄像机标定

第三章 单视图重建

第四章 三维重建基础与极几何

第五章 双目立体视觉重建

第六章 多视图重建

第七章 运动恢复结构(SfM)系统设计

第八章 同时定位与建图(SLAM)系统设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值