wangtao2001
码龄5年
关注
提问 私信
  • 博客:3,396
    3,396
    总访问量
  • 8
    原创
  • 1,315,037
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2020-02-18
博客简介:

weixin_46357810的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得2次收藏
创作历程
  • 1篇
    2021年
  • 7篇
    2020年
成就勋章
TA的专栏
  • SQL
    1篇
  • 数据结构
    2篇
  • Python科学计算
    5篇
  • Numpy
    5篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SQL语言概述

1.数据定义 1.1模式的定义与删除 模式即命名空间,在此模式下可继续定义基本表、视图、索引等,即数据库->模式->表、视图、索引等。 创建模式: CREATE SCHEAM [<模式名>] AUTHORIZATION <用户名>; 模式名省略时默认为用户名。 此句可同时使用创建基本表、视图,授权定义子句。 即: CREATE SCHEAM [<模式名>] AUTHORIZATION <用户名> [<表定义子句>|<视图定义子句
原创
发布博客 2021.04.26 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python描述:数据结构与算法 2.顺序表

2.1 线性表的概念和性质 2.1.1 线性表是 EEE 中有穷个元素的组成的序列 L=(e0,e1,...,en−1)L =(e_{0},e_{1},...,e_{n-1})L=(e0​,e1​,...,en−1​) ,元素之间的关系 为一个二元组的集合 R={<e0,e1>,<e1,e2>,...,<en−2,en−1>}R=\{ <e_{0},e_{1}>,<e_{1},e_{2}>,...,<e_{n-2},e_{n-1}> \
原创
发布博客 2020.10.31 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python numpy(4)数据存取

一二维数据的存取: CSV(逗号分隔值),是一种常见的文件格式,用来存储批量一二维数据。 在numpy中,向csv文件写入数据和读出数据通过以下两个函数实现: ​ np.savetxt(frame,array,fmt="%.18e",delimiter=None) a = np.arange(100).reshape(20,5) np.savetxt("a.csv",a,fmt="%d",delimiter=",") ​ np.loadtxt(frame,dtype=np.float,delimiter=
原创
发布博客 2020.10.23 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python numpy(3)数组运算

ndarray数组与标量的运算: 作用于数组中的每一个元素 >>>a = np.array([1,2,3,4,5]) >>>a += 2#标量(数据) >>>a array([3,4,5,6,7]) ndarray数组运算一元函数: 对数据执行元素级运算的函数,返回新数组 函数 说明 np.abs(a)/np.fabs(a) 计算数组各元素绝对值 np.sqrt(a) 计算数组各元素平方根 np.square(a) 计算数组各元
原创
发布博客 2020.10.23 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python numpy(2)数组索引和切片

ndarray数组索引和切片: 一维数据的索引和切片:与python列表类似 >>>a = np.array([1,2,3,4,5]) >>>a[2]#索引 3 >>>a[1:4:2]#切片 array([2,4]) 多维数组的索引和切片: >>>a = np.arange(24).reshape((2,3,4)) >>>a array([[[ 0, 1, 2, 3], [ 4, 5, 6,
原创
发布博客 2020.10.23 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python numpy(1)数组创建和变换

NumPy是使用Python进行科学计算的基础软件包。 导入: import numpy as np NumPy 提供了一个非常强大的N维数组对象 Ndarray。 ndarray数组包含两部分,实际的数据和描述数据的元数据(数据维度、数据类型等),用轴表示保存数组的维度,秩表示轴的数量。 >>>a = nd.array([[1,2,3],[4,5,6]]) >>>a array([[1,2,3], [4,5,6]]) >>>print(a
原创
发布博客 2020.10.23 ·
273 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python numpy随机数函数

NumPy随机数函数random子库: 函数 说明 rand(d0…dn) 根据d0…dn形状创建随机数数组,浮点数,[0,1)均匀分布 randn(d0…dn) 根据d0…dn形状创建随机数数组,标准正态分布 randint(low[,high,shape]) 根据shape形状创建随机数数组,范围是[low,high) seed(s) 随机数种子 shuffle(a) 对数组a的第0轴进行随机元素排列,改变数组a permutation(a) 对数组a的第0轴进行随机
原创
发布博客 2020.10.23 ·
1857 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数据结构与算法

1.1 使用计算机求解问题 1.1.1 开发(设计、编写)一个程序,通常是为了解决一类问题,程序每次执行时能够解决该问题的一个实例。 1.1.2 程序的开发过程: 需求分析(深入分析情况和细节,得到一个尽可能严格表述的问题表述) 数据组织和算法设计 编码 检查编译 调试测试(关键在于设计一套出色的测试用例) 维护 1.2 算法和算法设计 1.2.1 问题是需要解决的一类具体需求,而问题实例是所属问题的一个具体例子。算法则是解决问题的计算过程的严格描述,是一系列解决问题的清晰指令。
原创
发布博客 2020.10.23 ·
149 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏