如何解决打家劫舍问题

写完背包问题了,今天写动态规划的经典问题之一的打家劫舍问题。今天就直接上例子,因为这类问题用动态规划五部曲就可以解决,只是递推公式需要好好理解一下。

打家劫舍

题目:198. 打家劫舍 - 力扣(LeetCode)

  • dp数组及下标含义

dp[i]表示偷窃[0, i]号房能够偷窃到的最高金额

  • 递推公式

不偷i号房,dp[i] = dp[i - 1]

偷i号房,dp[i] = dp[i -2] + nums[i]

综上,dp[i] = max(dp[i - 1], dp[i -2] + nums[i])

  • 初始化

由递推公式知道dp[0]和dp[1]是需要初始化的,再根据dp数组的含义,得到dp[0] = nums[0],dp[1] = max(nums[0], nums[1])

  • 遍历顺序

根据递推公式,dp[i]由dp[i -1]和dp[i - 2]决定,所以从小到大遍历

打家劫舍2

题目:213. 打家劫舍 II - 力扣(LeetCode)

这道题的房子形成了一个环,但是换个思路就可以变成上一道题了。将0至n - 2号房和1至n - 1号房分别按第一题计算,这样就不会出现同时偷0号房和n - 1号房的情况,得到的两个结果返回较大值即可。

打家劫舍3

题目:337. 打家劫舍 III - 力扣(LeetCode)

  • dp数组及下标含义

dp[0]表示不偷该节点能够偷窃的最大价值,dp[1]表示偷该节点能够偷窃的最大价值

  • 递推公式

如果不偷该节点,dp[0] = 左孩子dp数组的最大值 + 右孩子dp数组的最大值

如果偷该节点,dp[1] = root -> val + left[0] + right[0]

  • 初始化

dp数组全初始化为0

  • 遍历顺序

采用后序遍历,因为最后由根节点决定是偷孩子节点还是根节点

这道题有点难,树加上动态规划,不太容易想到思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值