如何解决股票问题

今天写动态规划的经典问题——股票问题,还是直接上例子。

买卖股票的最佳时机

题目:121. 买卖股票的最佳时机 - 力扣(LeetCode)

  • dp数组及下标含义

dp[i][0]为第i天持有股票获得的利润,dp[i][1]为第i天不持有股票获得的利润

  • 递推公式

如果第i天持有股票:

  • 第i - 1天已持有股票,dp[i][0] = dp[i - 1][0]

  • 第i天买入股票,dp[i][0] = -prices[i]

dp[i][0] = max(dp[i - 1][0], -prices[i])

如果第i天不持有股票:

  • 第i - 1天不持有股票,dp[i][1] = dp[i - 1][1]

  • 第i天卖出持有股票,dp[i][1] = dp[i - 1][0] + prices[i]

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])

  • 初始化

由递推公式可知,dp[0][0]和dp[0][1]需要初始化

dp[0][0] = -prices[0]

dp[0][1] = 0

  • 遍历顺序

从小到大遍历

买卖股票的最佳时机2

题目:122. 买卖股票的最佳时机 II - 力扣(LeetCode)

  • dp数组及下标含义

dp[i][0]为第i天持有股票的利润,dp[i][1]为第i天不持有股票的利润

  • 递推公式

如果第i天持有股票:

  • 第i - 1天持有股票,dp[i][0] = dp[i - 1][0]

  • 第i天买入股票,dp[i][0] = dp[i - 1][1] - prices[i]

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])

如果第i天不持有股票:

  • 第i - 1天不持有股票,dp[i][1] = dp[i - 1][1]

  • 第i天卖出股票,dp[i][1] = dp[i - 1][0] + prices[i]

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])

  • 初始化

dp[0][0] = -prices[0]

dp[0][1] = 0

  • 遍历顺序

从小到大遍历

买卖股票的最佳时机3

题目:123. 买卖股票的最佳时机 III - 力扣(LeetCode)

  • dp数组及下标含义

dp[i][0]表示第一次持有股票的利润

dp[i][1]表示第一次未持有股票的利润

dp[i][2]表示第二次持有股票的利润

dp[i][3]表示第二次未持有股票的利润

  • 递推公式

dp[i][0] = max(dp[i - 1][0], -prices[i])

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])

dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i])

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i])

  • 初始化

dp[0][0] = -prices[0]

dp[0][1] = 0

dp[0][2] = -prices[0]

dp[0][3] = 0

  • 遍历顺序

从小到大遍历

买卖股票的最佳时机4

题目:188. 买卖股票的最佳时机 IV - 力扣(LeetCode)

  • dp数组及下标含义

dp[i][2k - 1]表示第k次持有股票,dp[i][2k]表示第k次未持有股票

  • 递推公式

dp[i][2k - 1] = max(dp[i - 1][2k - 1], dp[i - 1][2k - 2] - prices[i])

dp[i][2k] = max(dp[i - 1][2k], dp[i][2k - 1] + prices[i])

  • 初始化

dp[0][2k - 1] = -prices[0], dp[0][2k] = 0

  • 遍历顺序

从小到大遍历

最佳买卖股票时机含冷冻期

题目:Loading Question... - 力扣(LeetCode)

  • dp数组及下标含义

]dp[i][j]表示第i天达到状态j获得的利润

j = 0:持有股票

j = 1:至少两天前卖出股票,已度过冷冻期

j = 2:今天卖出股票,明天进入冷冻期

j = 3:昨天卖出股票,今天是冷冻期

注意:未持有股票的状态需要划分为两种,因为冷冻期的来源只限前一天卖出的,即j = 2,而未持有股票状态包括j = 1和j = 2

  • 递推公式

持有股票的来源有:前一天持有股票,前一天j = 1时买入股票,前一天j = 3时买入股票

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1], dp[i - 1][3]) - prices[i])

j = 1时,来源有:前一天状态j = 1,前一天是冷冻期

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3])

j = 2,卖出股票,利润增加

dp[i][2] = dp[i - 1][0] + prices[i]

j = 3,今天是冷冻期,利润应与前一天卖出股票的利润相同

dp[i][3] = dp[i - 1][2]

  • 初始化

dp[0][0] = -prices[i]

dp[0][1] = dp[0][2] = dp[0][3] = 0

  • 遍历顺序

从小到大

买卖股票的最佳时机含手续费

题目:714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)

思路:这道题比较简单,就是在未持有股票状态的递推公式稍作修改即可,这里不再详述。

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee)

总结

解决股票问题的关键就是找准股票有哪几种状态,每种状态的来源是什么,并反映到dp数组上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值