# Codeforces Round #678 (Div. 2)

Codeforces Round #678 (Div. 2) 传送门

### A - Reorder

For a given array a consisting of n integers and a given integer m find if it is possible to reorder elements of the array a in such a way that ∑ni=1∑nj=iajj equals m? It is forbidden to delete elements as well as insert new elements. Please note that no rounding occurs during division, for example, 52=2.5.

###### Input

The first line contains a single integer t — the number of test cases (1≤t≤100). The test cases follow, each in two lines.
The first line of a test case contains two integers n and m (1≤n≤100, 0≤m≤106). The second line contains integers a1,a2,…,an (0≤ai≤106) — the elements of the array.

###### Output

For each test case print “YES”, if it is possible to reorder the elements of the array in such a way that the given formula gives the given value, and “NO” otherwise.

2
3 8
2 5 1
4 4
0 1 2 3

YES
NO

###### Note

In the first test case one of the reorders could be [1,2,5]. The sum is equal to (11+22+53)+(22+53)+(53)=8. The brackets denote the inner sum ∑nj=iajj, while the summation of brackets corresponds to the sum over i.

### Code

#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<string.h>
using namespace std;
typedef long long ll;
const int maxn= 1e6+6;
const int mod = 1e9+7;

ll gcd(ll a ,ll b)
{
return b == 0? a:gcd(b , a%b);
}
//vector<node>vec[28];
int v[maxn];
int cur = 0;

int main()
{

int t;
cin>>t;
while(t--)
{
int sum = 0;
int n,m;
cin>>n>>m;
for(int i = 0 ; i < n ; i++)
{
cin>>v[i];
sum += v[i];
}
if(sum == m)
{
cout<<"YES"<<endl;
}else
{
cout<<"NO"<<endl;
}
}
return 0;
}


### B - Prime Square

Sasha likes investigating different math objects, for example, magic squares. But Sasha understands that magic squares have already been studied by hundreds of people, so he sees no sense of studying them further. Instead, he invented his own type of square — a prime square.
A square of size n×n is called prime if the following three conditions are held simultaneously:
all numbers on the square are non-negative integers not exceeding 105;
there are no prime numbers in the square;
sums of integers in each row and each column are prime numbers.
Sasha has an integer n. He asks you to find any prime square of size n×n. Sasha is absolutely sure such squares exist, so just help him!

###### Input

The first line contains a single integer t (1≤t≤10) — the number of test cases.
Each of the next t lines contains a single integer n (2≤n≤100) — the required size of a square.

###### Output

For each test case print n lines, each containing n integers — the prime square you built. If there are multiple answers, print any.

Sample

2
4
2

4 6 8 1
4 9 9 9
4 10 10 65
1 4 4 4
1 1
1 1

### Code

#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<string.h>
using namespace std;
typedef long long ll;
const int maxn= 1e6+6;
const int mod = 1e9+7;

bool isPrime[maxn];
void sieve()
{
for(int i = 0 ; i < maxn ; i++)
{
isPrime[i] = true;
}
for(int i = 2 ; (ll)i*i < maxn ; i++)
{
if(isPrime[i])
{
for(int j  = 2*i ; j < maxn ; j+=i)
{
isPrime[j] =false;
}
}

}
}
int vec[128][128];
int main()
{
sieve();
int t;
cin>>t;
while(t--)
{
//	memset(vec,1,sizeof(vec));
for(int i = 0 ; i < 128 ; i++)
{
for(int j = 0 ; j < 128 ; j++)
{
vec[i][j] = 1;
}
}
int n ;
cin>>n;
// x+sum = p
int p = n;
//	int sum = n-1;
//	int x = p-sum;
while(!(isPrime[p] && !isPrime[p-(n-1)]))
{
p++;
}
for(int i = 0 ; i < n ; i++)
{
for(int j = 0 ; j < n  ;j++)
{
if(i == j)
{
vec[i][j] = p-(n-1);
}
}
}
//ans
for(int i = 0  ; i < n ; i++)
{
for(int j = 0 ; j < n ; j++)
{
cout<<vec[i][j]<<" ";
}
cout<<endl;
}
//		cout<<endl;
}
return 0;
}

03-21 238

02-03 793
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客